scholarly journals Experimental classical entanglement in a 16 acoustic qubit-analogue

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Arif Hasan ◽  
Keith Runge ◽  
Pierre A. Deymier

AbstractThe possibility of achieving and controlling scalable classically entangled, i.e., inseparable, multipartite states, would fundamentally challenge the advantages of quantum systems in harnessing the power of complexity in information science. Here, we investigate experimentally the extent of classical entanglement in a $$16$$ 16 acoustic qubit-analogue platform. The acoustic qubit-analogue, a.k.a., logical phi-bit, results from the spectral partitioning of the nonlinear acoustic field of externally driven coupled waveguides. Each logical phi-bit is a two-level subsystem characterized by two independently measurable phases. The phi-bits are co-located within the same physical space enabling distance independent interactions. We chose a vector state representation of the $$16$$ 16 -phi-bit system which lies in a $${2}^{16}$$ 2 16 -dimensional Hilbert space. The calculation of the entropy of entanglement demonstrates the possibility of achieving inseparability of the vector state and of navigating the corresponding Hilbert space. This work suggests a new direction in harnessing the complexity of classical inseparability in information science.

2005 ◽  
Vol 17 (01) ◽  
pp. 1-14 ◽  
Author(s):  
WALTER F. WRESZINSKI

We consider a quantum system described by a concrete C*-algebra acting on a Hilbert space ℋ with a vector state ω induced by a cyclic vector Ω and a unitary evolution Ut such that UtΩ = Ω, ∀t ∈ ℝ. It is proved that this vector state is a ground state if and only if it is non-faithful and completely passive. This version of a result of Pusz and Woronowicz is reviewed, emphasizing other related aspects: passivity from the point of view of moving observers and stability with respect to local perturbations of the dynamics.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012026
Author(s):  
Miloslav Znojil

Abstract With an innovative idea of acceptability and usefulness of the non-Hermitian representations of Hamiltonians for the description of unitary quantum systems (dating back to the Dyson’s papers), the community of quantum physicists was offered a new and powerful tool for the building of models of quantum phase transitions. In this paper the mechanism of such transitions is discussed from the point of view of mathematics. The emergence of the direct access to the instant of transition (i.e., to the Kato’s exceptional point) is attributed to the underlying split of several roles played by the traditional single Hilbert space of states ℒ into a triplet (viz., in our notation, spaces K and ℋ besides the conventional ℒ ). Although this explains the abrupt, quantum-catastrophic nature of the change of phase (i.e., the loss of observability) caused by an infinitesimal change of parameters, the explicit description of the unitarity-preserving corridors of access to the phenomenologically relevant exceptional points remained unclear. In the paper some of the recent results in this direction are summarized and critically reviewed.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 273 ◽  
Author(s):  
Daniel Nickelsen ◽  
Michael Kastner

We introduce structured random matrix ensembles, constructed to model many-body quantum systems with local interactions. These ensembles are employed to study equilibration of isolated many-body quantum systems, showing that rather complex matrix structures, well beyond Wigner's full or banded random matrices, are required to faithfully model equilibration times. Viewing the random matrices as connectivities of graphs, we analyse the resulting network of classical oscillators in Hilbert space with tools from network theory. One of these tools, called the maximum flow value, is found to be an excellent proxy for equilibration times. Since maximum flow values are less expensive to compute, they give access to approximate equilibration times for system sizes beyond those accessible by exact diagonalisation.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 471 ◽  
Author(s):  
Ali Mostafazadeh

A non-Hermitian operator H defined in a Hilbert space with inner product ⟨ · | · ⟩ may serve as the Hamiltonian for a unitary quantum system if it is η -pseudo-Hermitian for a metric operator (positive-definite automorphism) η . The latter defines the inner product ⟨ · | η · ⟩ of the physical Hilbert space H η of the system. For situations where some of the eigenstates of H depend on time, η becomes time-dependent. Therefore, the system has a non-stationary Hilbert space. Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian. Their proper treatment requires a geometric framework which clarifies the notion of the energy observable and leads to a geometric extension of quantum mechanics (GEQM). We provide a general introduction to the subject, review some of the recent developments, offer a straightforward description of the Heisenberg-picture formulation of the dynamics for quantum systems having a time-dependent Hilbert space, and outline the Heisenberg-picture formulation of dynamics in GEQM.


2012 ◽  
Vol 09 (01) ◽  
pp. 1250009 ◽  
Author(s):  
A. MAHDIFAR ◽  
R. ROKNIZADEH ◽  
M. H. NADERI

In this paper, by using the nonlinear coherent states approach, we find a relation between the geometric structure of the physical space and the geometry of the corresponding projective Hilbert space. To illustrate the approach, we explore the quantum transition probability and the geometric phase in the curved space.


Sign in / Sign up

Export Citation Format

Share Document