Modulation of galactic cosmic rays and its traces in isotopic tracks on the Earth and the moon

2017 ◽  
Vol 81 (2) ◽  
pp. 170-172
Author(s):  
V. M. Ostryakov ◽  
A. V. Blinov ◽  
G. I. Vasilyev ◽  
A. N. Konstantinov ◽  
A. K. Pavlov ◽  
...  
2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Elena Amato ◽  
Sabrina Casanova

Accelerated particles are ubiquitous in the Cosmos and play a fundamental role in many processes governing the evolution of the Universe at all scales, from the sub-AU scale relevant for the formation and evolution of stars and planets to the Mpc scale involved in Galaxy assembly. We reveal the presence of energetic particles in many classes of astrophysical sources thanks to their production of non-thermal radiation, and we detect them directly at the Earth as cosmic rays. In the last two decades both direct and indirect observations have provided us a wealth of new, high-quality data about cosmic rays and their interactions both in sources and during propagation, in the Galaxy and in the Solar System. Some of the new data have confirmed existing theories about particle acceleration and propagation and their interplay with the environment in which they occur. Some others have brought about interesting surprises, whose interpretation is not straightforward within the standard framework and may require a change of paradigm in terms of our ideas about the origin of cosmic rays of different species or in different energy ranges. In this article, we focus on cosmic rays of galactic origin, namely with energies below a few petaelectronvolts, where a steepening is observed in the spectrum of energetic particles detected at the Earth. We review the recent observational findings and the current status of the theory about the origin and propagation of galactic cosmic rays.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
H. Kojima ◽  
K. P. Arunbabu ◽  
S. R. Dugad ◽  
S. K. Gupta ◽  
B. Hariharan ◽  
...  

2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


2008 ◽  
Vol 4 (S257) ◽  
pp. 471-473
Author(s):  
M. Buchvarova ◽  
P. Velinov

AbstractOur model generalizes the differential D(E) and integral D(>E) spectra of cosmic rays (CR) during the 11-year solar cycle. The empirical model takes into account galactic (GCR) and anomalous cosmic rays (ACR) heliospheric modulation by four coefficients. The calculated integral spectra in the outer planets are on the basis of mean gradients: for GCR – 3%/AU and 7%/AU for anomalous protons. The obtained integral proton spectra are compared with experimental data, the CRÈME96 model for the Earth and theoretical results of 2D stochastic model. The proposed analytical model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.


Space Weather ◽  
2013 ◽  
Vol 11 (11) ◽  
pp. 643-650 ◽  
Author(s):  
Harlan E. Spence ◽  
Michael J. Golightly ◽  
Colin J. Joyce ◽  
Mark D. Looper ◽  
Nathan A. Schwadron ◽  
...  

2017 ◽  
Vol 13 (S335) ◽  
pp. 69-74
Author(s):  
A. Dal Lago ◽  
C. R. Braga ◽  
R. R. S. de Mendonca ◽  
M. Rockenbach ◽  
E. Echer ◽  
...  

AbstractThe Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.


2020 ◽  
Vol 40 (4) ◽  
pp. 947-961
Author(s):  
Masayuki Naito ◽  
Nobuyuki Hasebe ◽  
Mana Shikishima ◽  
Yoshiharu Amano ◽  
Junichi Haruyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document