Stress-strain state and thermal state of rubber-cord casings of highly elastic couplings

2008 ◽  
Vol 28 (12) ◽  
pp. 1159-1164 ◽  
Author(s):  
I. A. Tribel’skii ◽  
A. V. Zubarev
2021 ◽  
Vol 316 ◽  
pp. 967-972
Author(s):  
Alexander S. Savinov ◽  
Sergey M. Andreev ◽  
Nikolay A. Feoktistov

The paper considers the issue of mathematical simulating the stress-strain state of a roll in the course of its heat treatment. It is shown that a sound heat treatment schedule affects significantly the economic efficiency of a metallurgical enterprise. The mathematical apparatus is provided to estimate the thermal interaction in the casting-furnace system, based on which a program for calculating the thermal state of a roll during heat treatment has been developed. Using this program allows evaluating the thermal stresses occurring in a roll during the heat treatment cycle and reducing the risk of discontinuity in the roll cast billet. Also, using the program developed, allows significant reducing the engineer-technologist man-hours for the design of the process cycle of the casting heat treatment. An example of calculating the thermal state of a roll with a diameter of 930 mm in casting is given. The change in the dynamics of the maximum temperature gradient along the product radius is shown, while correlating it with the furnace setting.


Author(s):  
O.Yu. Chernousenko ◽  
V.A. Peshko ◽  
D.V. Ryndiuk

Modernization of sealing units with a change of design is carried out in order to improve the technical and economic parameters of steam turbines. It is known from experience of operation of the turbine equipment that, ring cracks in rotors arise in sealing areas. This is due to both seals design features and the accumulation of thermocyclic fatigue. The research is devoted to the study of resource parameters of the high-pressure rotor of the T-250/300-240 turbine equipped with seals of labyrinth, honeycomb and direct-flow type. Numerical experiments were performed on the basis of three-dimensional geometric models of interflow end seals of the high pressure rotor. The finite element method is used to discretize the computational area. The thermal state of the turbine is calculated for the starting mode from the cold state of the metal by solving the boundary value problem of thermal conductivity in a non-stationary setting. The calculation of the stress-strain state of the turbine takes into account the obtained data on temperature stresses and forces from the non-uniformity of temperature fields, as well as centrifugal forces and steam pressure. Differences in the stress-strain state of the rotor for different seal designs are established. It is indicated that after grooving of labyrinth interflow seals to the honeycomb structure, the stress level in the rotor decreased by 8 %, and when grooving to the direct-flow structure — by 21 %. The accumulated damage in the main metal of the turbine was determined using experimental curves of long-term strength of steel 25Cr1Mo1V. The calculation of resource indicators showed that in the transition from the labyrinth to the honeycomb design of the seals, the individual resource of the high-pressure rotor increases by 6.1 %, and in the transition to direct-flow — by 14.4 %. Ref. 10, Fig. 5, Tab. 1.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document