scholarly journals A SYSTEMATIC REVIEW OF CAD SYSTEM BASED APPROACH IN DIAGNOSING BREAST CANCER AND ANALYZE EFFECTIVENESS OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS IN EARLY DETECTION

2021 ◽  
Vol 10 (11 (SPECIAL ISSUE)) ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


Author(s):  
Vaira Suganthi Gnanasekaran ◽  
Sutha Joypaul ◽  
Parvathy Meenakshi Sundaram

Breast cancer is leading cancer among women for the past 60 years. There are no effective mechanisms for completely preventing breast cancer. Rather it can be detected at its earlier stages so that unnecessary biopsy can be reduced. Although there are several imaging modalities available for capturing the abnormalities in breasts, mammography is the most commonly used technique, because of its low cost. Computer-Aided Detection (CAD) system plays a key role in analyzing the mammogram images to diagnose the abnormalities. CAD assists the radiologists for diagnosis. This paper intends to provide an outline of the state-of-the-art machine learning algorithms used in the detection of breast cancer developed in recent years. We begin the review with a concise introduction about the fundamental concepts related to mammograms and CAD systems. We then focus on the techniques used in the diagnosis of breast cancer with mammograms.


Author(s):  
Pooja Pathak ◽  
Anand Singh Jalal ◽  
Ritu Rai

Background: Breast cancer represents uncontrolled breast cell growth. Breast cancer is the most diagnosed cancer in women worldwide. Early detection of breast cancer improves the chances of survival and increases treatment options. There are various methods for screening breast cancer such as mammogram, ultrasound, computed tomography, Magnetic Resonance Imaging (MRI). MRI is gaining prominence as an alternative screening tool for early detection and breast cancer diagnosis. Nevertheless, MRI can hardly be examined without the use of a Computer-Aided Diagnosis (CAD) framework, due to the vast amount of data. Objective: This paper aims to cover the approaches used in CAD system for the detection of breast cancer. Method: In this paper, the methods used in CAD systems are categories in two classes: the conventional approach and artificial intelligence (AI) approach. The conventional approach covers the basic steps of image processing such as preprocessing, segmentation, feature extraction and classification. The AI approach covers the various convolutional and deep learning networks used for diagnosis. Conclusion: This review discusses some of the core concepts used in breast cancer and presents a comprehensive review of efforts in the past to address this problem.


2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document