scholarly journals Modified Electromagnetic Actuator for Active Suspension System

Author(s):  
Prajwal V R ◽  
Chandrashekar Murthy B N ◽  
Yashwanth S D

Active suspension is a type of suspension systems which can vary its damping value in order to adjust the spring firmness in accordance with the road conditions. Real Active Suspension incorporates an external actuator which helps in raising or lowering of vehicle chassis independently at each wheel. Generally, the actuators that are used for active suspension are Hydropneumatic, Electro-hydraulic or Electromagnetic actuators. A new concept of two-way electromagnetic actuation with the help of magnetic damping is proposed in this paper, which can extend its arm on both sides to facilitate active suspension mechanism in both humps and potholes. This increases the ride quality while maneuvering not only in humps, but also in dumps. It also describes about the comparison of spring materials, sophisticated design, construction and working principle of newly proposed actuator. Catia V5 software has been used to design and simulate the actuator model, different spring materials are analyzed and their shear stress and deflections are compared.

Author(s):  
Zhengkai Li ◽  
Weichao Sun ◽  
Huijun Gao

The most important function of a vehicle suspension system is keeping the tires on the road surface, imposing requirements on the road-holding performance. As is well known, a semi-active suspension can improve road-holding performance, but little effort has been made to build road-holding-oriented semi-active suspension controllers (RHSAC). This study improved four model reference controllers (MRCs) as RHSAC, including the road-Hook (RH), inverse ground-Hook (IGH), sky-Hook (SH), and ground-Hook (GH). These MRCs have optimal performances in different frequency ranges, and their working principle is analyzed from an energy perspective. To combine the advantages of different MRCs, a mixed control strategy is proposed to enhance the road-holding performance of the MRCs. By mixing SH and RH, the mixed SH–RH performs almost as well as a finely tuned model predictive controller, which outperforms any single MRCs. Based on CarSim-matlab cosimulations, the effectiveness of the mixed RHSAC controller is verified by various real road tests.


2021 ◽  
Vol 11 (19) ◽  
pp. 8912
Author(s):  
Seunghoon Woo ◽  
Donghoon Shin

This paper presents a double sky-hook algorithm for controlling semi-active suspension systems in order to improve road-holding property for application in an in-wheel motor. The main disadvantage of the in-wheel motor is the increase in unsprung masses, which increases after shaking of the wheel, so it has poor road-holding that the conventional theoretical sky-hook algorithm cannot achieve. The double sky-hook algorithm uses a combination of damper coefficients, one from the chassis motion and the other from the wheel motion. Computer simulations using a quarter and full car dynamic models with the road conditions specified by ISO2631 showed the effectiveness of the algorithm. It was observed that the algorithm was the most effective in the vicinity of the wheel hop frequency. This paper also proposed the parameter set of the double sky-hook algorithm to differentiate the driving mode of vehicles under advanced development.


2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


1979 ◽  
Vol 101 (4) ◽  
pp. 321-331
Author(s):  
L. M. Sweet ◽  
H. C. Curtiss ◽  
R. A. Luhrs

A linearized model of the pitch-heave dynamics of a Tracked Ram Air Cushion Vehicle is presented. This model is based on aerodynamic theory which has been verified by wind tunnel and towed model experiments. The vehicle is assumed to be equipped with two controls which can be configured to provide various suspension system characteristics. The ride quality and dynamic motions of the fixed winglet vehicle moving at 330 km/hr over a guideway described by roughness characteristics typical of highways is examined in terms of the rms values of the vertical acceleration in the foremost and rearmost seats in the passenger cabin and the gap variations at the leading and trailing edges of the vehicle. The improvement in ride quality and dynamic behavior which can be obtained by passive and active suspension systems is examined and discussed. Optimal regulator theory is employed to design the active suspension system. The predicted rms values of the vertical acceleration in the one-third octave frequency bands are compared with the vertical ISO Specifications. It is shown that marked improvements in the ride quality can be obtained with either the passive or active suspension systems.


Author(s):  
Chi Nguyen Van

This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient


Author(s):  
Gokhan Kararsiz ◽  
Mahmut Paksoy ◽  
Muzaffer Metin ◽  
Halil Ibrahim Basturk

This article presents an application of the adaptive control method to semi-active suspension systems in the presence of unknown disturbance and parametric uncertainty. Due to the technical difficulties such as time delay and sensor noise, the road disturbance is assumed to be unmeasured. To overcome this problem, an observer is designed to estimate the disturbance. It is considered that the road profile consists of a finite number of the sum of sinusoidal signals with unknown amplitudes, phases and frequencies. After the parametrization of the observer, the adaptive control approach is employed to attenuate the effect of the road-induced vibrations using a magnetorheological damper. It is proved that the closed-loop system is stable, despite the adverse road conditions. Finally, the performance of the controller is illustrated with a hardware-in-the-loop simulation in which the system is subjected to sinusoidal and random profile road excitations. To demonstrate the benefits of the adaptive controller, the results are presented in comparison with a conventional proportional integral derivative (PID) controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Jing Zhao ◽  
Tao Xu ◽  
Ka In Wong ◽  
...  

Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW), is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP). It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.


1993 ◽  
Vol 115 (4) ◽  
pp. 498-508 ◽  
Author(s):  
A. Hac´ ◽  
I. Youn

Several control laws for active and semi-active suspension based on a linear half car model are derived and investigated. The strategies proposed take full advantage of the fact that the road input to the rear wheels is a delayed version of that to the front wheels, which in turn can be obtained either from the measurements of the front wheels and body motions or by direct preview of road irregularities if preview sensors are available. The suspension systems are optimized with respect to ride comfort, road holding and suspension rattle space as expressed by the mean-square-values of body acceleration (including effects of heave and pitch), tire deflections and front and rear suspension travels. The optimal control laws that minimize the given performance index and include passivity constraints in the semi-active case are derived using calculus of variation. The optimal semi-active suspension becomes piecewise linear, varying between passive and fully active system and combinations of them. The performances of active and semi-active systems with and without preview were evaluated by numerical simulation in the time and frequency domains. The results show that incorporation of time delay between the front and rear axles in controller design improves the dynamic behavior of the rear axle and control of body pitch motion, while additional preview improves front wheel dynamics and body heave.


Author(s):  
Hakan Basargan ◽  
András Mihály ◽  
Ádám Kisari ◽  
Péter Gáspár ◽  
Olivier Sename

Adaptive suspension control considering passenger comfort and stability of the vehicle has been researched intensively, thus several automotive companies already apply these technologies in their high-end models. Most of these systems react to the instantaneous effects of road irregularities, however, some expensive camera-based systems adapting the suspension in coherence with upcoming road conditions have already been introduced. Thereby, using oncoming road information the performance of adaptive suspension systems can be enhanced significantly. The emerging technology of cloud computing enables several promising features for road vehicles, one of which may be the implementation of an adaptive semi-active suspension system using historic road information gathered in the cloud database. The main novelty of the paper is the developed semi-active suspension control method in which Vehicle-to-Cloud-to-Vehicle technology serves as the basis for the road adaptation capabilities of the suspension system. The semi-active suspension control is founded on the Linear Parameter-Varying framework. The operation of the presented system is validated by a real data simulation in TruckSim simulation environment.


2014 ◽  
Vol 663 ◽  
pp. 141-145
Author(s):  
Mohd Hanif Harun ◽  
W.Mohd Zailimi Wan Abdullah ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Khisbullah Hudha

This paper is aimed to show the improvement of ride quality of railway vehicle with semi-active suspension systems. The dynamics of nine degrees-of-freedom (9-DOF) railway vehicle model is developed consists of a vehicle body, two bogies and four wheel-set. The disturbance considered is track irregularity which is modelled as a sine wave. The control algorithm for the semi-active suspension system is developed based on Stability Augmentation System (SAS) integrated with skyhook controller to reduce the effect of track disturbance. The performances of passive and semi-active suspension are compared by simulation using MATLAB-SIMULINK software. The results of the study show that the proposed controller is able to significantly improve ride quality of railway vehicle body. It is also noted that the additional ride control loop which is skyhook control is able to further improve the performance of SAS controller for the system.


Sign in / Sign up

Export Citation Format

Share Document