scholarly journals The algorithm of adaptive control for active suspension systems using pole assign and cascade design method

Author(s):  
Chi Nguyen Van

This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient

Author(s):  
Hakan Basargan ◽  
András Mihály ◽  
Ádám Kisari ◽  
Péter Gáspár ◽  
Olivier Sename

Adaptive suspension control considering passenger comfort and stability of the vehicle has been researched intensively, thus several automotive companies already apply these technologies in their high-end models. Most of these systems react to the instantaneous effects of road irregularities, however, some expensive camera-based systems adapting the suspension in coherence with upcoming road conditions have already been introduced. Thereby, using oncoming road information the performance of adaptive suspension systems can be enhanced significantly. The emerging technology of cloud computing enables several promising features for road vehicles, one of which may be the implementation of an adaptive semi-active suspension system using historic road information gathered in the cloud database. The main novelty of the paper is the developed semi-active suspension control method in which Vehicle-to-Cloud-to-Vehicle technology serves as the basis for the road adaptation capabilities of the suspension system. The semi-active suspension control is founded on the Linear Parameter-Varying framework. The operation of the presented system is validated by a real data simulation in TruckSim simulation environment.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Jun Fu ◽  
Bin Li ◽  
Xiao-Bin Ning ◽  
Wei-Dong Xie

In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP). Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR) approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass) and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.


2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


Author(s):  
S¸ahin Yıldırım ◽  
I˙kbal Eski

This paper investigates a new robust model based neural controller for active suspension system’s vibrations via feedback control approach. The proposed model reference adaptive control system consists of a neural controller, a robust feedback controller, a third-order linear reference model and dynamics of active suspension system. The simulation examples with various standard input signals are included to demonstrate the effectiveness of the proposed control method and show significant improvement over the existing PID controller method. The robustness of the proposed neural controller is also analyzed with white noise disturbances on the suspension system. It is shown that the control system is robustly stable for all road disturbances. Finally, this kind of control approach could be employed in real time vehicle applications.


Author(s):  
Gokhan Kararsiz ◽  
Mahmut Paksoy ◽  
Muzaffer Metin ◽  
Halil Ibrahim Basturk

This article presents an application of the adaptive control method to semi-active suspension systems in the presence of unknown disturbance and parametric uncertainty. Due to the technical difficulties such as time delay and sensor noise, the road disturbance is assumed to be unmeasured. To overcome this problem, an observer is designed to estimate the disturbance. It is considered that the road profile consists of a finite number of the sum of sinusoidal signals with unknown amplitudes, phases and frequencies. After the parametrization of the observer, the adaptive control approach is employed to attenuate the effect of the road-induced vibrations using a magnetorheological damper. It is proved that the closed-loop system is stable, despite the adverse road conditions. Finally, the performance of the controller is illustrated with a hardware-in-the-loop simulation in which the system is subjected to sinusoidal and random profile road excitations. To demonstrate the benefits of the adaptive controller, the results are presented in comparison with a conventional proportional integral derivative (PID) controller.


Author(s):  
Alexandru Dobre

In the context of improving the comfort and dynamics of the vehicle, the suspension system has been continuously developed and improved, especially using magnetorheological (MR) shock absorbers. The development of this technology which is relatively new has not been easy. Thus, the first widespread commercial use of MR fluid in a semi-active suspension system was implemented in passenger cars. The magnetorheological shock absorber can combine the comfort with the dynamic driving, because it allows the damping characteristic to be adapted to the road profile. The main objective of the paper is to analyze the dynamic behavior of the magnetorheological shock absorber in the semi-active suspension. In this sense, the author carried out a set of experimental measurements with a damping test bench, specially built and equipped with modern equipment. The results obtained from the experimental determinations show a significantly improved comfort when using a magnetorheological shock absorber, compared to a classic one, by the fact that the magnetorheological shock absorber allows to modify the damping coefficient according to the road conditions, thus maintaining the permanent contact between the tire and the road due to increased damping force.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012014
Author(s):  
M H Ab Talib ◽  
I Z Mat Darus ◽  
H M Yatim ◽  
M S Hadi ◽  
N M R Shaharuddin ◽  
...  

Abstract The semi-active suspension (SAS) system is a partial suspension device used in the vehicle system to improve the ride comfort and road handling. Due to the high non-linearity of the road profile disturbances plus uncertainties derived from vehicle dynamics, a conventional Skyhook controller is not deemed enough for the vehicle system to improve the performance. A major problem of the implementation of the controller is to optimize a proper parameter as this is an important element in demanding a good controller response. An advanced Firefly Algorithm (AFA) integrated with the modified skyhook (MSky) is proposed to enhance the robustness of the system and thus able to improve the vehicle ride comfort. In this paper, the controller scheme to be known as MSky-AFA was validated via MATLAB simulation environment. A different optimizer based on the original firefly algorithm (FA) is also studied in order to compute the parameter of the MSky controller. This control scheme to be known as MSky-FA was evaluated and compared to the proposed MSky-AFA as well as the passive suspension control. The results clearly exhibit more superior and better response of the MSky-AFA in reducing the body acceleration and displacement amplitude in comparison to the MSky-FA and passive counterparts for a sinusoidal road profile condition.


Author(s):  
Duval A. Johnson

This study is conducted to provide preliminary data that fractional calculus can be used to optimize active automobile suspension systems. Most automobile suspension systems perform their duties using a single spring with fixed damping rates and are referred to as being a passive system. An active suspension system has the ability to directly control force actuators in the suspension system or by varying the damping rates within the shock absorbers to provide control over body position, velocity, and acceleration. A mathematical model for a quarter car suspension system has been obtained to compare passive, integer, and fractionally controlled active suspension systems and show that fractional calculus may be used to improve the performance of any active system.


2020 ◽  
Vol 21 (6) ◽  
pp. 611
Author(s):  
Xing Chen ◽  
Sen Han ◽  
Tianhong Luo ◽  
Du Guo

This paper presented a new control strategy for active suspension of nonlinear quarter-vehicle model. An active suspension controller designed for using sliding mode control with noise filtering. The Kalman filter (KF) predicted the state response of the nonlinear one-quarter automobile model, and the estimated values used for the design of the active control force. Finally, the shock absorption performance compared with the LQR controller and the passive suspension. The simulation results showed that the control method significantly improve the ride performance and safety of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document