scholarly journals A Systematic Review on Drug Delivery Systems Based on Their Mechanism of Drug Release and Their Applications

Author(s):  
Amit Prakash ◽  
Amit Prakash

Oral drug delivery is the most commonly used and preferred route of delivery of pharmaceuticals which has been successfully treating wide number of diseases. The advantages of this method of delivery are patient friendly, cost effective, established delivery system, noninvasiveness and convenient, and In the pharmaceutical field it is the most favored drug delivery system. Oral drug delivery systems along with other effective delivery system types that are effective and promising are discussed in this paper based on the mechanism of drug release.

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Mehrdad Mahkam ◽  
Reihaneh Mohammadi ◽  
Seyed Omid Ranaei Siadat ◽  
Seyed Ehsan Ranaei-siadat

AbstractSucrose esters (SE) are surfactants with potential pharmaceutical applications because of their low toxicity, biocompatibility, and excellent biodegradability. Biodegradable and biocompatible copolymeric hydrogels based on glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) and methacrylic acid (MAA) were designed and synthesized. Because of the growing importance of sugar-based hydrogels as drug delivery systems, these new pH-responsive glucose-containing copolymeric hydrogels were investigated for oral drug delivery. The GATA monomer was synthesized and characterized. The copolymeric hydrogel was synthesized by free-radical polymerization. Azobisisobutyronitrile (AIBN) was the free-radical initiator employed and Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was the crosslinking agent (CA) used for hydrogel preparations. The hydrogels were characterized by differential scanning calorimetry and FT-IR. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model drug, olsalazine [3, 3-َazobis (6-hydroxy benzoic acid)] (OSZ) an azo derivative of 5-aminosalicylic acid (5-ASA), was entrapped in these gels and the in vitro release profiles were established separately in both enzyme-free SGF and SIF. The drug release was found to be faster in SIF. The drug-release profiles indicated that amount of drug release depends on their degree of swelling and crosslinking.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2021 ◽  
Author(s):  
Alla Krasnoshtanova ◽  
Anastasiya Bezyeva

"The oral route of drug inclusion is the most convenient for the patient. In addition to ease of use, this method of drug inclusion has such advantages as non-invasiveness of inclusion, absence of complications during injection; comparative safety for the organism due to the passage of the active substance and auxiliary compounds through the gastrointestinal tract; the possibility of introducing larger doses of the drug at one time. However, despite the obvious advantages, the oral route of inclusion has a number of significant disadvantages that significantly limit its use for a number of drugs. Among them are: relatively slow therapeutic action of the drug with this route of inclusion; the aggressive effect of a number of drugs (for example, antibiotics) on the gastrointestinal tract; low bioavailability of a number of substances (especially high molecular weight hydrophilic compounds), caused by poor permeability of the intestinal epithelium for hydrophilic and large molecules, as well as enzymatic and chemical degradation of the active substance in the gastrointestinal tract. There are various approaches used in the development of oral drug delivery systems. In particular, for the targeted delivery of drugs, it is proposed to use nano- and microcapsules with mucoadhesive properties. Among the polymers used for the synthesis of these microparticles, it is preferable to use pH-dependent, gelable biopolymers that change their structure depending on the acidity of the environment. Microcapsules obtained from compounds with the above properties are capable of protecting the active substance (or from the active substance) in the stomach environment and ensuring its release in the intestine. These properties are possessed by such polysaccharides as alginate, pectin, carrageenan, xylan, etc. The listed biopolymers are non-toxic, biocompatible, and biodegradable, which makes microparticles containing these polysaccharides promising as oral drug delivery systems. To impart mucoadhesive properties to nanoparticles, complexes of the listed polymers with chitosan are used. In this research, pectin, a polysaccharide formed mainly by residues of galacturonic acid, was used as a structural polymer. The concentrations of substances in the initial solutions were selected that were optimal for the synthesis of microcapsules. The main parameters for evaluating the resulting microparticles were the size of the capsules (less than 1 μm for oral inclusion), the zeta-potential, showing the tendency of the microparticles to stick together, and the completeness of the binding of the microparticles to chitosan. It was found that the optimal solutions for the synthesis of microparticles are: 15.7 ml of a solution of pectin 0.093% by weight, 3.3 ml of a solution of chitosan 0.07% by weight and 1.0 ml of a solution of CaCl2 20 mM. The diameter of the microparticles obtained by this method was 700-800 nm, and the value of their zetta-potential, equal to - (34 ± 3) mV, does not cross the particle adhesion threshold. It was also found that the synthesis of microparticles at these concentrations of calcium chloride provides the most complete binding of chitosan to their surface, which increases the mucoadhesive properties of microparticles."


Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


Author(s):  
Pooja Mathur ◽  
Chandra Kant Mathur ◽  
Kanchan Mathur

The subcutaneous injection of insulin for the treatment of diabetes mellitus can lead to patient non-compliance, discomfort, pain and local infection is a chronic metabolic health disease affecting the homeostasis of blood sugar levels in human beings. Oral route of drug delivery system has been the most widely accepted means of drug administration other than invasive drug delivery systems. For the development of an oral insulin delivery system, we have to focus on overcoming the various gastro-intestinal barriers for insulin uptake from the gastrointestinal tract. To overcome these barriers various types of formulations such as insulin conjugates, micro/nanoparticles, liposomes, hydrogel, capsule, and tablets are designed to deliver insulin orally. Various potential ways to administer insulin orally has been explored over years but a fluctuating level of insulin release have been recorded. A number of advancement has taken place in the recent years for understanding the needs of improved oral delivery systems of insulin. This review article concentrates on the challenges for oral drug delivery of insulin as well as various carriers used for the oral drug delivery of insulin and also provides the relevant information about the clinical tested formulations of oral insulin and its patents.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (10) ◽  
pp. 5-12
Author(s):  
S. R. Pattan ◽  
◽  
N. P Wani ◽  
M. U Shelar ◽  
S. A. Nirmal ◽  
...  

In recent years there have been several scientific and technological advancements in the research and development of rate-controlled oral drug delivery systems by overcoming physiological adversities,such as short gastric residence time (GRT) and unpredictable gastric emptying time (GET). Several approaches are currently utilized in the prolongation of the GRT, including floating drug delivery systems (FDDS), also known as hydrodynamically balanced systems (HBS), swelling and expanding systems,polymeric bioadhesive systems, modified-shape systems, high-density systems and other delayed gastric emptying devices. In this review, the current technological developments of FDDS including patented delivery systems and marketed products, and their advantages and future potential for oral controlled drug delivery are discussed.


Sign in / Sign up

Export Citation Format

Share Document