scholarly journals T Tauri stars: magnetic fields and planets

2021 ◽  
Vol 2 (1) ◽  
pp. 9-20
Author(s):  
Konstantin Grankin

In this short review we present the results of a study of the large-scale magnetic topologies of T Tauri stars (TTS). A small spectropolarimetric survey of 8 young stars was carried out within two international projects MaPP (Magnetic Protostars and Planets) and MaTYSSE (Magnetic Topologies of Young Stars and the Survival of massive close-in Exoplanets) between 2009 and 2016. For each of our targets we reconstructed the brightness map and the magnetic field topology using Zeeman–Doppler imaging (ZDI). This review contains a brief description of spectropolarimetricdata, the ZDI method, one example of the reconstruction of brightness and magnetic maps, and the properties of magnetic fields of 8 TTS. Our results suggest that AA Tau and LkCa 15 interact with their disks in the propeller mode when their rotation is actively slowed by the star/disk magnetic coupling. We find that magnetic fields of some TTS are variable on a time scale of a few years and are thus intrinsically nonstationary. We report on the detection of a giant exoplanet around V830 Tau and TAP 26. These two new detections suggest that the type II disk migration is efficient at generating newborn hot Jupiters (hJs) around young TTS. The result of our survey is compared to the global picture of magnetic field properties of twenty TTS in the Hertzsprung–Russell diagram. The comparison shows that WTTS exhibit a wider range of field topologies as compared to CTTS, and that magnetic fields of all TTS (CTTS and WTTS as a whole) are mostly poloidal and axisymmetric when they are mostly convective and cooler than 4300 K. This needs to be confirmed with a larger sample of stars.

2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


Author(s):  
B A Nicholson ◽  
G Hussain ◽  
J-F Donati ◽  
D Wright ◽  
C P Folsom ◽  
...  

Abstract We present an analysis of spectropolarimetric observations of the low-mass weak-line T Tauri stars TWA 25 and TWA 7. The large-scale surface magnetic fields have been reconstructed for both stars using the technique of Zeeman Doppler imaging. Our surface maps reveal predominantly toroidal and non-axisymmetric fields for both stars. These maps reinforce the wide range of surface magnetic fields that have been recovered, particularly in pre-main sequence stars that have stopped accreting from the (now depleted) central regions of their discs. We reconstruct the large scale surface brightness distributions for both stars, and use these reconstructions to filter out the activity-induced radial velocity jitter, reducing the RMS of the radial velocity variations from 495 m s −1 to 32 m s −1 for TWA 25, and from 127 m s −1 to 36 m s −1 for TWA 7, ruling out the presence of close-in giant planets for both stars. The TWA 7 radial velocities provide an example of a case where the activity-induced radial velocity variations mimic a Keplerian signal that is uncorrelated with the spectral activity indices. This shows the usefulness of longitudinal magnetic field measurements in identifying activity-induced radial velocity variations.


2018 ◽  
Vol 14 (A30) ◽  
pp. 123-123
Author(s):  
Markus Schöller ◽  
Swetlana Hubrig

AbstractModels of magnetically driven accretion reproduce many observational properties of T Tauri stars. For the more massive Herbig Ae/Be stars, the corresponding picture has been questioned lately, in part driven by the fact that their magnetic fields are typically one order of magnitude weaker. Indeed, the search for magnetic fields in Herbig Ae/Be stars has been quite time consuming, with a detection rate of about 10% (e.g. Alecian et al. 2008), also limited by the current potential to detect weak magnetic fields. Over the last two decades, magnetic fields were found in about twenty objects (Hubrig et al. 2015) and for only two Herbig Ae/Be stars was the magnetic field geometry constrained. Ababakr, Oudmaijer & Vink (2017) studied magnetospheric accretion in 56 Herbig Ae/Be stars and found that the behavior of Herbig Ae stars is similar to T Tauri stars, while Herbig Be stars earlier than B7/B8 are clearly different. The origin of the magnetic fields in Herbig Ae/Be stars is still under debate. Potential scenarios include the concentration of the interstellar magnetic field under magnetic flux conservation, pre-main-sequence dynamos during convective phases, mergers, or common envelope developments. The next step in this line of research will be a dedicated observing campaign to monitor about two dozen HAeBes over their rotation cycle.


2018 ◽  
Vol 14 (A30) ◽  
pp. 121-121
Author(s):  
Jean-Francois Donati

AbstractMagnetic fields play a key role in the early life of stars and their planets, as they form from collapsing dense cores that progressively flatten into large-scale accretion discs and eventually settle as young suns orbited by planetary systems. Pre-main-sequence phases, in which central protostars feed from surrounding planet-forming accretion discs, are especially crucial for understanding how worlds like our Solar System are born.Magnetic fields of low-mass T Tauri stars (TTSs) are detected through high-resolution spectroscopy and spectropolarimetry (e.g., Johns Krull 2007), whereas their large-scale topologies can be inferred from time series of Zeeman signatures using tomographic techniques inspired from medical imaging (Donati & Landstreet 2009). Large-scale fields of TTSs are found to depend on the internal structure of the newborn star, allowing quantitative models of how TTSs magnetically interact with their inner accretion discs, and the impact of this interaction on the subsequent stellar evolution (e.g., Romanova et al. 2002, Zanni & Ferreira 2013).With its high sensitivity to magnetic fields, SPIRou, the new near-infrared spectropolarimeter installed in 2018 at CFHT (Donati et al. 2018), should yield new advances in the field, especially for young embedded class-I protostars, thereby bridging the gap with radio observations.


2016 ◽  
Vol 12 (S328) ◽  
pp. 101-106
Author(s):  
Colin A. Hill ◽  

AbstractT-Tauri stars (TTS) are late-type pre-main-sequence (PMS) stars that are gravitationally contracting towards the MS. Those that possess a massive accretion disc are known as classical T-Tauri stars (cTTSs), and those that have exhausted the gas in their inner discs are known as weak-line T-Tauri stars (wTTSs). Magnetic fields largely dictate the angular momentum evolution of TTS and can affect the formation and migration of planets. Thus, characterizing their magnetic fields is critical for testing and developing stellar dynamo models, and trialling scenarios currently invoked to explain low-mass star and planet formation. The MaTYSSE programme (Magnetic Topologies of Young Stars and the Survival of close-in Exoplanets) aims to determine the magnetic topologies of ~30 wTTSs and monitor the long-term topology variability of ~5 cTTSs. We present several wTTSs that have been magnetically mapped thus far (using Zeeman Doppler Imaging), where we find a much wider range of field topologies compared to cTTSs and MS dwarfs with similar internal structures.


2016 ◽  
Vol 12 (S328) ◽  
pp. 282-289 ◽  
Author(s):  
Louise Yu ◽  

AbstractThis conference paper reports the recent discoveries of two hot Jupiters (hJs) around weak-line T Tauri stars (wTTS) V830 Tau and TAP 26, through the analysis of spectropolarimetric data gathered within the Magnetic Topologies of Young Stars and the Survival of massive close-in Exoplanets (MaTYSSE) observation programme. HJs are thought to form in the outskirts of protoplanetary discs, then migrate inwards close to their host stars as a result of either planet-disc type II migration or planet-planet scattering. Looking for hJs around young forming stars provides key information on the nature and time scale of such migration processes, as well as how their migration impacts the subsequent architecture of their planetary system. Young stars are however extremely active, to the point that their radial velocity (RV) jitter is around an order of magnitude larger than the potential signatures of close-in gas giants, making them difficult to detect with velocimetry. Three techniques to filter out this activity jitter are presented here, two using Zeeman Doppler Imaging (ZDI) and one using Gaussian Process Regression (GPR).


2018 ◽  
Vol 14 (S345) ◽  
pp. 297-298
Author(s):  
Alexander E. Dudorov ◽  
Sergey A. Khaibrakhmanov ◽  
Sergey Yu. Parfenov ◽  
Andrey M. Sobolev

AbstractThe large-scale magnetic field in the accretion disks of young stars is investigated. Main features of our magnetohydrodynamical (MHD) model of the accretion disks and typical simulation results are presented. We discuss the role of MHD effects, ionization structure, magnetic field geometry and strength of the accretion disks.


2010 ◽  
Vol 6 (S273) ◽  
pp. 181-187
Author(s):  
J. Morin ◽  
J.-F. Donati ◽  
P. Petit ◽  
L. Albert ◽  
M. Auriére ◽  
...  

AbstractMagnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution.The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations bring novel constraints on magnetic field generation by dynamo effect in cool stars. In particular, the study of solar twins brings new insight on the impact of rotation on the solar dynamo, whereas the detection of strong and stable dipolar magnetic fields on fully convective stars questions the precise role of the tachocline in this process.


2020 ◽  
Vol 497 (1) ◽  
pp. 632-642
Author(s):  
A Lavail ◽  
O Kochukhov ◽  
G A J Hussain ◽  
C Argiroffi ◽  
E Alecian ◽  
...  

ABSTRACT We report time-resolved, high-resolution optical spectropolarimetric observations of the young double-lined spectroscopic binary V1878 Ori. Our observations were collected with the ESPaDOnS spectropolarimeter at the Canada–France–Hawaii Telescope through the BinaMIcS large programme. V1878 Ori A and B are partially convective intermediate mass weak-line T Tauri stars on an eccentric and asynchronous orbit. We also acquired X-ray observations at periastron and outside periastron. Using the least-squares deconvolution technique (LSD) to combine information from many spectral lines, we clearly detected circular polarization signals in both components throughout the orbit. We refined the orbital solution for the system and obtained disentangled spectra for the primary and secondary components. The disentangled spectra were then employed to determine atmospheric parameters of the two components using spectrum synthesis. Applying our Zeeman Doppler imaging code to composite Stokes IV LSD profiles, we reconstructed brightness maps and the global magnetic field topologies of the two components. We find that V1878 Ori A and B have strikingly different global magnetic field topologies and mean field strengths. The global magnetic field of the primary is predominantly poloidal and non-axisymmetric (with a mean field strength of 180 G). While the secondary has a mostly toroidal and axisymmetric global field (mean strength of 310 G). These findings confirm that stars with very similar parameters can exhibit radically different global magnetic field characteristics. The analysis of the X-ray data shows no sign of enhanced activity at periastron, suggesting the lack of strong magnetospheric interaction at this epoch.


2013 ◽  
Vol 9 (S302) ◽  
pp. 25-37 ◽  
Author(s):  
Gaitee A. J. Hussain ◽  
Evelyne Alecian

AbstractStrong, kilo-Gauss, magnetic fields are required to explain a range of observational properties in young, accreting pre-main sequence (PMS) systems. We review the techniques used to detect magnetic fields in PMS stars. Key results from a long running campaign aimed at characterising the large scale magnetic fields in accreting T Tauri stars are presented. Maps of surface magnetic flux in these systems can be used to build 3-D models exploring the role of magnetic fields and the efficiency with which magnetic fields can channel accretion from circumstellar disks on to young stars. Long-term variability in T Tauri star magnetic fields strongly point to a dynamo origin of the magnetic fields. Studies are underway to quantify how changes in magnetic fields affect their accretion properties. We also present the first results from a new programme that investigates the evolution of magnetic fields in intermediate mass (1.5–3M⊙) pre-main sequence stars as they evolve from being convective T Tauri stars to fully radiative Herbig AeBe stars.


Sign in / Sign up

Export Citation Format

Share Document