scholarly journals Modeling and forecasting of groundwater regime for rice systems as one of the main indicators of ameliorative state of the territory

Author(s):  
K. V. Dudchenko ◽  
T. M. Petrenko ◽  
O. I. Flinta ◽  
M. M. Datsuk

Relevance of research. An important factor of the formation of the soil state of modern rice irrigation systems is water-salt, nutrient and groundwater regimes. Ground water level is one of the indicators of the technical state of rice irrigation systems. Direct correlative dependence of rice yield on the ameliorative state of the field is proved by many researchers. Maintaining of soil fertility when growing rise at a constant level is ensured by sustentation of the ground water level not less than 1,5 m from the surface in the inter-vegetation period. Measures to combat flooding in the territory are developed based on monitoring dates. GIS technologies should be used to quickly perform the assessment of conditions when man-made factors change. Objective of research is to develop the forecast models of the mail indicators of the hydro-ameliorative state of rice irrigation systems, particularly for ground water levels, for saving their fertility and increasing their efficiency. Research methods. Mathematical-statistical, comparative and retrospective methods were used for analyzing the data base. The data from the Kakhovska hydrogeological and reclamation section of the Lower Dnieper BWMA as well as the data of own research over 28- year observations were used for model developing. The model of groundwater regime for the conditions of rice irrigation system was developed using the method of three-parameters smoothing, which takes into account seasonal fluctuations, in the program Statistica 10.0. The forecast was made for the period of 5 years for every month. The forecast models were developed for the experimental and production conditions. Results. The difference in groundwater level during a year at rice irrigation systems ranges from 0,5 to 1,0 m from the surface. Maximum actual value of ground water level in experimental conditions was 4,25 m from the surface, minimum actual value was 0,15 m from the surface during the research period and they did not differ much from the model values. The sampling interval was 4,19 m for the actual data and 3,88 m for the model. Close relation between the model of ground water regime for experimental conditions and the actual data is confirmed by the correlation coefficient 0,96. The forecast of ground water regime of rice irrigation system for the experimental conditions shows that the groundwater level will decrease in the period of 2019-2024 years and will vary in the range of 1,20-2,23 m from the surface. Maximum actual value of ground water level in the production conditions was 3,78 m from the surface, minimum one was 1,39 m from surface. Model data do not much differ from the actual values. The reliability of the developed model of ground water regime for the production conditions of rice irrigation systems is confirmed by the correlation coefficient 0,96. The forecast model of the groundwater regime developed for production conditions shows that the indicator will increase in the period of 2018-2023 years and will change in the range of 2,13-2,85 m from the surface. Conclusions. Forecast modeling of ground water regime of rice irrigation systems shows that ground water level will be deeper than 2,0 m from surface in inter-vegetation period in experimental and production conditions. The results of forecasting have proved that it is unlikely the occurrence of negative soil process due to ground water regime and a good hydrogeological-ameliorative state of experimental and production rice irrigation systems during the forecast period.

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S139-S146 ◽  
Author(s):  
J. Šútor ◽  
M. Gomboš ◽  
M. Kutílek ◽  
M. Krejča

During the vegetation season, the water storage in the soil aeration zone is influenced by meteorological phenomena and by the vegetated cover. If the groundwater table is in contact with the soil profile, its contribution to water storage must be considered. This impact can be either monitored directly or the mathematical model of the soil moisture regime can be used to simulate it. We present the results of monitoring soil water content in the aeration zone of the East Slovakian Lowland. The main problem is the evaluation of the soil water storage in seasons and in years in the soil profile. Until now, classification systems of the soil water regime evaluation have been mainly based upon climatological factors and soil morphology where the classification has been realized on the basis of indirect indicators. Here, a new classification system based upon quantified data sets is introduced and applied for the measured data. The system considers the degree of accessibility of soil water to plants, including the excess of soil water related to the duration for those characteristic periods. The time span is hierarchically arranged to differentiate between the dominant water storage periods and short-term fluctuations. The lowest taxonomic units characterize the vertical fluxes over time periods. The system allows the comparison of soil water regime taxons over several years and under different types of vegetative cover, or due to various types of land use. We monitored soil water content on two localities, one with a deep ground water level, one with a shallow ground water level. The profile with a shallow ground water level keeps a more uniform taxons and subtaxons of soil water regime due to the crop variation than the profile with a deep ground water level.


2020 ◽  
Vol 174 ◽  
pp. 01039
Author(s):  
Olga Puhova ◽  
Vladimir Lebedev

The article evaluates the weather and hydrological impact on geotechnology when fragmented peat is milled and dried at a peat deposit. The amount of moisture feeding the fragmented peat of a deposit was studied and was determined to depend on the ground water level. The influence of drainage on the water regime of a high-more peat deposit and that of weather conditions on ground water level fluctuations over time have been evaluated at production sites with an open drainage network. When a peat deposit is drained, under the action of gravitation (the pressure differential in the ground and a drain), ground water seeps into the drains and is transported along them, down-grade, to the collection network and diverted from the drained area. The processes of moisture movement at a peat deposit help evaluate and justify measures to improve its water-air regime which is used in the development of intensive draining methods for a peat deposit and the maintenance of the necessary water regime in peat deposits.


Author(s):  
M Gayathri ◽  
D Arun Shunmugam ◽  
A Ishwariya

In this work we use drip irrigation where the water was allowed to drip slowly to the roots of plant either from above the soil surface or buried into the surface so that the water can be placed directly into the root zone and minimize evaporation. It uses temperature sensor, soil humidity sensor to collect and monitor field information and also uses float switches to monitor ground water level through web page. When the field gets dry and ground water level falls down it will be notified through SMS. This provides a solution for the problems in developing a smart farming system. It uses node MCU, relay and water pump.


Sign in / Sign up

Export Citation Format

Share Document