scholarly journals Analysis of ecological benefits of traffic flow electrification

2019 ◽  
Vol 65 (2) ◽  
pp. 19-27
Author(s):  
Nemanja Stepanović ◽  
Vladan Tubić

Road transport is responsible for 22% of the total CO2 emissions, 39% of NOx emission and 10% share of particulate matters (PM10, PM2.5) emission. The use of passenger cars, as an extremely dominant category of vehicles, is at constant growth, which causes an increase or insufficient reduction of Greenhouse Gas emission, despite the technological improvements of exaust emission devices. Due to the growing harmful effects on the environment and human health, as well as the recent scandals associated with internal combustion engine tehcnology („Dieselgate scandal”), development of new technology is fast forward toward electric vehicles.The biggest automotive corporations plans dominant fleet electrification in the next 10 years. However, sudden share increase of the electric vehicles in the traffic flow can lead to the capacity overcoming of the electricity grid network, or the issue of the "ecological footprint" of such a trend. In this paper, the overall environmental impact (so-called Well-to-Wheel analysis) of the increasing number of electric vehicles was analysed. Comparison analysis of vehicles equipped with internal combustion egines and electric vehicles showed the absence of Greenhouse Gass emisson reduction in countries with low percentage of electricity gained from renewable energy sources. Well-to-Wheel analysis was also conducted for several scenarios of electric vehicles participation in traffic flow in Republic of Serbia i.e their influence on electricity grid network and its emission.

Procedia CIRP ◽  
2020 ◽  
Vol 90 ◽  
pp. 291-296
Author(s):  
Dennis Wilken ◽  
Matthias Oswald ◽  
Patrick Draheim ◽  
Christian Pade ◽  
Urte Brand ◽  
...  

2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Dominik Bucher ◽  
Henry Martin ◽  
Jannik Hamper ◽  
Atefeh Jaleh ◽  
Henrik Becker ◽  
...  

Abstract. The adoption of electric vehicles has the potential to help decarbonizing the transport sector if they are powered by renewable energy sources. Limitations commonly associated with e-cars are their comparatively short ranges and long recharging cycles, leading to anxiety when having to travel long distances. Other factors such as temperature, destination or weekday may influence people in choosing an e-car for a certain trip. Using a unique dataset of 129 people who own both an electric vehicle (EV) as well as one powered by an internal combustion engine (ICE), we analyze tracking data over a year in order to have an empirically verified choice model. Based on a wide range of predictors, this model tells us for an individual journey if the person would rather choose the EV or the ICE car. Our findings show that there are only weak relations between the predictor and target variables, indicating that for many people the switch to an e-car would not affect their lifestyle and the related range anxiety diminishes when actually owning an electric vehicle. In addition, we find that choice behavior does not generalize well over different users.


Author(s):  
S Geruk ◽  
О Sukmanyuk ◽  
O Kalnahus

The work is devoted to the urgent issue of the invention and development of foreign and domestic electric vehicles, which is one of the possible directions in solving the issue of environmental conservation. Almost 80% of the global automotive market is heading for a ban on gasoline and the switch to electric cars and hybrids. However, this movement was, until recently, leisurely, if not slow. The popularity of electric vehicles in the world is due to the fact that they have several advantages compared to cars with an internal combustion engine. The principle of operation of an electric vehicle is based on the fact that the movement is provided by the operation of an engine that uses electric energy for its work. The electric motor plays the same role as the internal combustion engine, in addition, in the electric car, it is possible to install several engines that are able to distribute energy more efficiently and more rationally. Batteries play the function of a fuel tank, which supplies the engine with the energy necessary to ensure the movement of the car. For Ukraine, innovation is very important for the development of our country. Constant demand makes it clear that the future of electric cars. Ukrainians are paying more and more attention to such passenger cars, or hybrid ones. Every year the number of registered electric vehicles becomes more and more. The article highlights the main stages of the development of electric vehicles and presents the main problems of these vehicles, which indicate that they tend to be constantly improved.


2017 ◽  
Vol 2650 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Tanja Niels ◽  
Klaus Bogenberger

In recent years, the services of free-floating carsharing (FFCS) systems have gained popularity, especially in urban areas. Some FFCS operators are now including battery electric vehicles (BEVs) in their fleets. This addition is especially beneficial for cities and their inhabitants, as BEVs are locally emission free and move more quietly. However, how FFCS customers react to the new technology has not yet been empirically analyzed. By combining the app call and booking data of an FFCS operator in Munich, Germany, this study assessed the preferences of customers when booking a specific car and evaluated the attractiveness of the fleet’s BEVs. With the consideration of the spatial availability encountered when the mobile phone app was opening, the study found that the distance to the nearest available car was the most important decision criterion for customers. If a car had been available within 200 m, the probability that customers booked a car would have been twice as great compared with the case that the nearest vehicle had been 500 m away (100 m ≈ 0.06 mi). In addition, the majority of the customers booked the nearest available car. Nevertheless, certain qualities of vehicles made users walk to a car that was farther away. The study identified popular vehicle models and found that customers preferred to use the fleet’s BEVs, independent of the battery level. BEVs were used for almost the same distances as internal combustion engine vehicles and were suitable for most use cases: more than 80% of the FFCS trips covered a distance of at most 20 km (≈12.4 mi).


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1046
Author(s):  
Maksymilian Mądziel ◽  
Tiziana Campisi ◽  
Artur Jaworski ◽  
Giovanni Tesoriere

Urban agglomerations close to road infrastructure are particularly exposed to harmful exhaust emissions from motor vehicles and this problem is exacerbated at road intersections. Roundabouts are one of the most popular intersection designs in recent years, making traffic flow smoother and safer, but especially at peak times they are subject to numerous stop-and-go operations by vehicles, which increase the dispersion of emissions with high particulate matter rates. The study focused on a specific area of the city of Rzeszow in Poland. This country is characterized by the current composition of vehicle fleets connected to combustion engine vehicles. The measurement of the concentration of particulate matter (PM2.5 and PM10) by means of a preliminary survey campaign in the vicinity of the intersection made it possible to assess the impact of vehicle traffic on the dispersion of pollutants in the air. The present report presents some strategies to be implemented in the examined area considering a comparison of current and project scenarios characterized both by a modification of the road geometry (through the introduction of a turbo roundabout) and the composition of the vehicular flow with the forthcoming diffusion of electric vehicles. The study presents an exemplified methodology for comparing scenarios aimed at optimizing strategic choices for the local administration and also shows the benefits of an increased electric fleet. By processing the data with specific tools and comparing the scenarios, it was found that a conversion of 25% of the motor vehicles to electric vehicles in the current fleet has reduced the concentration of PM10 by about 30% along the ring road, has led to a significant reduction in the length of particulate concentration of the motorway, and it has also led to a significant reduction in the length of the particulate concentration for the access roads to the intersection.


2020 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Romeo Danielis ◽  
Mariangela Scorrano ◽  
Marco Giansoldati ◽  
Stefano Alessandrini

The paper investigates whether it makes economic sense to use electric vehicles (EVs) in the public sector fleet. Thanks to the data collected in 2018 in 77 public sector entities in an Italian region, Friuli Venezia Giulia, we compare the total cost of ownership of a battery electric vehicle with that of a similar internal combustion engine one. We provide estimates for four scenarios (status quo, social cost internalization, price discounts and a combination of the last two) for three groups of public entities (local health authorities, municipalities and special purpose authorities) regarding passenger cars and mixed-use small light commercial vehicles. We find that, with the current price and cost structure, it makes economic sense to adopt EVs for a positive although relatively small percentage of the public sector fleet.


Sign in / Sign up

Export Citation Format

Share Document