Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons

Orbit ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 216-219 ◽  
Author(s):  
Richard L. Scawn ◽  
Alex Foster ◽  
Bradford W. Lee ◽  
Don O. Kikkawa ◽  
Bobby S. Korn
Author(s):  
Matthew Bergin ◽  
Thomas Myles ◽  
Aleksandar Radić ◽  
Christopher Hatchwell ◽  
Sam Lambrick ◽  
...  

Abstract Developing the next generation of scanning helium microscopes requires the fabrication of optical elements with complex internal geometries. We show that resin stereolithography (SLA) 3D printing produces low-cost components with the requisite convoluted structures whilst achieving the required vacuum properties, even without in situ baking. As a case study, a redesigned pinhole plate optical element of an existing scanning helium microscope was fabricated using SLA 3D printing. In comparison to the original machined component, the new optical element minimised the key sources of background signal, in particular multiple scattering and the secondary effusive beam.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1577
Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.


Author(s):  
Sanjeev Chopra ◽  
Ashim Kumar Boro ◽  
Virendra Deo Sinha

AbstractThree-dimensional (3D) printing technology in neurosurgery has gained popularity nowadays. Skull base contains many major neurovascular structures in a confined space, along with anatomical variations making surgical approaches to this region challenging. 3D-printed model of skull base tumors consists of the patient's bony skull base, actual tumor dimensions, and surrounding major neurovascular structures. We included a total number of five patients with skull base tumors (one case of planum sphenoidale meningioma, two cases of sellar tumor with suprasellar extension, and two cases of cerebellopontine angle tumor) and 3D-printed tumor model of each of them. These models were used for preoperative simulation and served as very true to life training tool. These help in increasing the efficacy of the surgeon, improves surgical safety and ergonomics. They were also used for patient counselling, educating about the disease, the surgical procedure, and associated risks.


Author(s):  
Bastian E. Rapp ◽  
Frederik Kotz ◽  
Nico Keller ◽  
Kai Sachsenheimer ◽  
Nadine Kirschner ◽  
...  
Keyword(s):  

2020 ◽  
Vol 129 (12) ◽  
pp. 1168-1173 ◽  
Author(s):  
Alexandra McMillan ◽  
Armine Kocharyan ◽  
Simone E. Dekker ◽  
Elias George Kikano ◽  
Anisha Garg ◽  
...  

Objective: To identify 3D-printed temporal bone (TB) models that most accurately recreate cortical mastoidectomy for use as a training tool by comparison of different materials and fabrication methods. Background: There are several different printers and materials available to create 3D-printed TB models for surgical planning and trainee education. Current reports using Acrylonitrile Butadiene Styrene (ABS) plastic generated via fused deposition modeling (FDM) have validated the capacity for 3D-printed models to serve as accurate surgical simulators. Here, a head-to-head comparison of models produced using different materials and fabrication processes was performed to identify superior models for application in skull base surgical training. Methods: High-resolution CT scans of normal TBs were used to create stereolithography files with image conversion for application in 3D-printing. The 3D-printed models were constructed using five different materials and four printers, including ABS printed on a MakerBot 2x printer, photopolymerizable polymer (Photo) using the Objet 350 Connex3 Printer, polycarbonate (PC) using the FDM-Fortus 400 mc printer, and two types of photocrosslinkable acrylic resin, white and blue (FLW and FLB, respectively), using the Formlabs Form 2 stereolithography printer. Printed TBs were drilled to assess the haptic experience and recreation of TB anatomy with comparison to the current paradigm of ABS. Results: Surgical drilling demonstrated that FLW models created by FDM as well as PC and Photo models generated using photopolymerization more closely recreated cortical mastoidectomy compared to ABS models. ABS generated odor and did not represent the anatomy accurately. Blue resin performed poorly in simulation, likely due to its dark color and translucent appearance. Conclusions: PC, Photo, and FLW models best replicated surgical drilling and anatomy as compared to ABS and FLB models. These prototypes are reliable simulators for surgical training.


Sign in / Sign up

Export Citation Format

Share Document