scholarly journals Drug Delivery Nanoparticles: Toxicity Comparison in Retinal Pigment Epithelium and Retinal Vascular Endothelial Cells

2016 ◽  
Vol 31 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Haijiang Lin ◽  
Yueran Yue ◽  
Daniel E. Maidana ◽  
Peggy Bouzika ◽  
Alp Atik ◽  
...  
2019 ◽  
Vol 15 (12) ◽  
pp. 2305-2320
Author(s):  
Hongxia Chen ◽  
Hong Deng ◽  
Xianbiao Zou ◽  
Jingquan Zhao

Verteporfin photodynamic therapy (PDT) has been approved for the treatment of exudative age-related macular degeneration (AMD) for over a decade. However, its extensive application has been impeded by inevitably collateral tissue damage and immediate induction of angiogenesis, in addition to the need of multiple treatments. In order to develop prospective photosensitizers for clinical use, a triphenyl phosphonium-modified cationic liposomal hypocrellin B (TPP cationic LHB) for angiogenic targeting and endothelial internalization was constructed. With optimal PDT parameters, TPP cationic LHB can lead to death of choroid-retinal vascular endothelial cells while cause negligible damage to collateral retinal pigment epithelium cells. This is likely due to the mitochondria targeting and effective intracellular singlet oxygen generation of TPP cationic LHB in vascular endothelial cells. Additionally, in vivo chick chorioallantoic membrane assay indicated the elevated neovessel-targeting ability and photo-induced anti-angiogenic activity of TPP cationic LHB. Furthermore, TPP cationic LHB PDT is able to maintain neovessel occlusion for an extended period of time compared with verteporfin PDT, without inducing significant increased expression of some angiogenic factors, such as vascular endothelial growth factor and integrin αvβ3. This study describes a facile strategy that may be useful for developing new-generation photosensitizers to circumvent the limitations of PDT treatment of exudative AMD.


2019 ◽  
Vol 116 (48) ◽  
pp. 24100-24107 ◽  
Author(s):  
Andrew P. Voigt ◽  
Kelly Mulfaul ◽  
Nathaniel K. Mullin ◽  
Miles J. Flamme-Wiese ◽  
Joseph C. Giacalone ◽  
...  

The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.


Sign in / Sign up

Export Citation Format

Share Document