Early Response of the Canine Respiratory Tract Following Long-Term Exposure to a Sulfur(IV) Aerosol at low Concentration. II. Biochemistry and Cell Biology of Lung Lavage Fluid

1992 ◽  
Vol 4 (3) ◽  
pp. 175-195 ◽  
Author(s):  
K. Maier ◽  
I. Beck-speier ◽  
N. Dayal ◽  
P. Heilmann ◽  
H. Hinze ◽  
...  
1992 ◽  
Vol 4 (3) ◽  
pp. 235-246 ◽  
Author(s):  
H. Schulz ◽  
G. Eder ◽  
P. Heilmann ◽  
L. Ruprecht ◽  
C. Schumann ◽  
...  

1992 ◽  
pp. 109-111
Author(s):  
J. Heyder ◽  
I. Beck-Speier ◽  
G. A. Ferron ◽  
P. Heilmann ◽  
E. Karg ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niina Haiminen ◽  
Filippo Utro ◽  
Ed Seabolt ◽  
Laxmi Parida

AbstractIn response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection.


2021 ◽  
pp. 204589402110110
Author(s):  
Xiang Zhao ◽  
Yao Meng ◽  
Duo Li ◽  
Zhaomin Feng ◽  
Weijuan Huang ◽  
...  

Aims: The virus is common in patients with viral pneumonia. However, the viral etiology and clinical features of patients with viral pneumonia in China remain unclear. The main purpose of this study was to analyze the viral causes and epidemiology of patients with viral pneumonia in Beijing, which can significantly improve the pertinence and accuracy of clinical treatment of the disease. Methods: Firstly, 1,539 respiratory specimens of pneumonia (oropharyngeal swabs, nasopharyngeal swabs, saliva samples and bronchoalveolar lavage fluid) were collected from 19 hospitals in Beijing from September 2015 to August 2018. Then, TaqMan low-density microfluidic chip technology was used to detect viral pneumonia specimens in 1,539 respiratory tract specimens of pneumonia, and determine the types of viral bacteria in them. Lastly, the analysis of demographic, clinical and etiological data of patients with viral pneumonia was performed. Results: The results showed that among the 1,539 respiratory tract specimens with pneumonia, 760 were detected as viral pneumonia specimens, with a positive rate of 49.4%. Among which, 467 were infected with mono-viral and 293 were infected with multi-viral. Influenza A virus (Flu A), mycoplasma pneumoniae (MPn), ebola virus (EBV) and herpes simplex virus type 1 (HSV-1) were the major viral components in the samples of these patients. Furthermore, these viral species were significantly associated with sample sources, onset season and certain clinical characteristics. Discussion: Our findings may provide corresponding treatment strategies for viral pneumonia patients infected with specific viruses.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Qiongya Mo ◽  
Bingbin Wang ◽  
Nian Dong ◽  
Lianmin Bao ◽  
Xiaoqiong Su ◽  
...  

Pulmonary alveolar proteinosis (PAP) is a rare interstitial lung disease characterized by the abnormal alveolar accumulation of surfactant components. The diagnosis of PAP can be easily missed since it is rare and lacks specific clinical symptoms. It is of great importance to have a better understanding of the crucial clue to clinically diagnose PAP and take PAP into consideration in the differential diagnosis of interstitial pulmonary diseases or other diseases with similar manifestations. Here, we analyze the clinical characteristics of 11 cases of PAP patients in local hospital and review the relevant literature in order to provide more information in diagnosis and management of PAP. In our observation, cyfra21-1 and neuron-specific enolase (NSE) known as tumor markers probably can be useful serum markers for diagnosis of PAP. As for the method of pathologic diagnosis, open-lung biopsy was the gold standard but now it is less required because findings on examination of bronchoalveolar lavage fluid (BALF) can help to make the diagnosis. We also have deep experience about when and how to carry out lung lavage.


Sign in / Sign up

Export Citation Format

Share Document