Role of Hydroxyl Radicals in Radiation-Induced Activation of Lyn Tyrosine Kinase in Human B-Cell Precursors

1996 ◽  
Vol 22 (5-6) ◽  
pp. 421-430 ◽  
Author(s):  
Jun Xiao ◽  
John E. Biaglow ◽  
Hean-Joo Chae-Park ◽  
Jizhong Jin ◽  
Lisa Tuel-Ahlgren ◽  
...  
1996 ◽  
Vol 20 (5-6) ◽  
pp. 417-426 ◽  
Author(s):  
Lisa Tuel-Ahlgren ◽  
Xiao Jun ◽  
Kevin G. Waddick ◽  
Jizhong Jin ◽  
Joseph Bolen ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Anja Steinmaurer ◽  
Isabella Wimmer ◽  
Thomas Berger ◽  
Paulus Stefan Rommer ◽  
Johann Sellner

: Significant progress has been made in understanding the immunopathogenesis of multiple sclerosis (MS) over recent years. Successful clinical trials with CD20-depleting monoclonal antibodies have corroborated the fundamental role of B cells in the pathogenesis of MS and reinforced the notion that cells of the B cell lineage are an attractive treatment target. Therapeutic inhibition of Bruton's tyrosine kinase (BTK), an enzyme involved in B cell and myeloid cell activation and function, is regarded as a next-generation approach that aims to attenuate both errant innate and adaptive immune functions. Moreover, brain-penetrant BTK inhibitors may impact compartmentalized inflammation and neurodegeneration within the central nervous system by targeting brain-resident B cells and microglia, respectively. Preclinical studies in animal models of MS corroborated an impact of BTK inhibition on meningeal inflammation and cortical demyelination. Notably, BTK inhibition attenuated the antigen-presenting capacity of B cells and the generation of encephalitogenic T cells. Evobrutinib, a selective oral BTK inhibitor, has been tested recently in a phase 2 study of patients with relapsing-remitting MS. The study met the primary endpoint of a significantly reduced cumulative number of Gadolinium-enhancing lesions under treatment with evobrutinib compared to placebo treatment. Thus, the results of ongoing phase 2 and 3 studies with evobrutinib, fenobrutinib, and tolebrutinib in relapsing-remitting and progressive MS are eagerly awaited. This review article introduces the physiological role of BTK, summarizes the pre-clinical and trial evidence, and addresses the potential beneficial effects of BTK inhibition in MS.


1996 ◽  
Vol 271 (11) ◽  
pp. 6389-6397 ◽  
Author(s):  
Fatih M. Uckun ◽  
Lisa Tuel-Ahlgren ◽  
Kevin G. Waddick ◽  
Xiao Jun ◽  
Jizhong Jin ◽  
...  

2007 ◽  
Vol 204 (9) ◽  
pp. 2047-2051 ◽  
Author(s):  
Simona Ferrari ◽  
Vassilios Lougaris ◽  
Stefano Caraffi ◽  
Roberta Zuntini ◽  
Jianying Yang ◽  
...  

Agammaglobulinemia is a rare primary immunodeficiency characterized by an early block of B cell development in the bone marrow, resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. So far, mutations in Btk, μ heavy chain, surrogate light chain, Igα, and B cell linker have been found in 85–90% of patients with agammaglobulinemia. We report on the first patient with agammaglobulinemia caused by a homozygous nonsense mutation in Igβ, which is a transmembrane protein that associates with Igα as part of the preBCR complex. Transfection experiments using Drosophila melanogaster S2 Schneider cells showed that the mutant Igβ is no longer able to associate with Igα, and that assembly of the BCR complex on the cell surface is abrogated. The essential role of Igβ for human B cell development was further demonstrated by immunofluorescence analysis of the patient's bone marrow, which showed a complete block of B cell development at the pro-B to preB transition. These results indicate that mutations in Igβ can cause agammaglobulinemia in man.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2860 ◽  
Author(s):  
Filippo Torrisi ◽  
Nunzio Vicario ◽  
Federica M. Spitale ◽  
Francesco P. Cammarata ◽  
Luigi Minafra ◽  
...  

Advances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.


Sign in / Sign up

Export Citation Format

Share Document