Inhibitory Effect of Aryl Thienyl-Ketones and - Thioketones on Arachidonic Acid-induced Malondialdehyde Formation in Human Platelets: Biological Data and Molecular Modelling

1991 ◽  
Vol 5 (4) ◽  
pp. 281-291 ◽  
Author(s):  
Alain Nuhrich ◽  
Martine Varache-beranger ◽  
Alain Carpy ◽  
Martine Montagut ◽  
Guy Devaux
1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


1996 ◽  
Vol 75 (04) ◽  
pp. 617-622 ◽  
Author(s):  
Thomas Meyer ◽  
Christina Unterberg ◽  
Heinrich Kreuzer ◽  
Arnd B Buchwald

SummaryCalponin, a basic smooth-muscle protein capable of binding to F-actin, tropomyosin and calmodulin in vitro, was tested for its expression and subcellular localization in resting and stimulated human platelets. Using immunoblotting techniques calponin was revealed as a single protein band with a molecular weight of 34 kDa. Although calponin has been shown to be proteolytically degraded by calpain, in the presence of the calpain inhibitor E-64 and EGTA a significant hydrolysis of calponin could not be detected. Upon stimulation with 10 μM arachidonic acid calponin became increasingly incorporated into Triton X-100 insoluble cytoskeletal fractions reaching a plateau after 15 s. The accumulation of calponin in the cytoskeletons of stimulated platelets paralleled the polymerization of actin into newly formed microfilaments. Immunofluorescence microscopy revealed a sub-membranous co-localization of calponin and actin in aggregated platelets. Since isolated calponin is phosphorylated by protein kinase C and Ca2+/calmodulin-dependent protein kinase II thereby losing its inhibitory effect on the actomyosin MgATPase activity, we examined whether changes in cell shape due to platelet stimulation are accompanied by a phosphorylation of calponin. By performing immunoblotting analysis on either resting or stimulated platelets phosphorylation of calponin on tyrosine, serine or threonine residues could not be demonstrated. In line, [32P]radiolabeling experiments were unable to detect phosphate incorporation into calponin. These observations support the hypothesis that calponin plays a physiological role in regulating contraction and secretion of human platelets even in the absence of its phosphorylation.


1988 ◽  
Vol 60 (01) ◽  
pp. 059-062 ◽  
Author(s):  
Jean-Paul Oudinet ◽  
Josée Sraer ◽  
Marcelle Bens ◽  
Raymond Ardaillou

SummaryThe effect of the association of purified polymorphonuclear leukocytes (PMNL) with platelets on arachidonic acid (AA) metabolism was studied in the presence of various concentrations of this fatty acid. Both thromboxane B2 (TXB2) and 12-hydroxyeicosatetraenoic acid (12-HETE) were measured. In the presence of tracer doses of AA, addition of increasing amounts of PMNL to platelets inhibited in a concentration-dependent manner their 12-HETE and TXB2 production. This inhibition was not due to diversion of AA metabolism towards other pathways since, apart a negligible amount of 12,20-diHETE, no other product could be detected. Inhibition of piatelet-TXB2 synthesis by PMNL persisted at increasing concentrations of AA below 16 μM. Above this concentration, TXB2 production by platelets incubated alone diminished progressively. Addition of PMNL blunted in part this inhibitory effect and even resulted, above 16 μM AA, in an increased production of TXB2. In contrast with what was observed for TXB2 formation, the inhibition of 12-HETE synthesis persisted when PMNL and platelets were coincubated in the presence of high doses of AA (163 μM). At this concentration, 15-HETE generation became apparent for each cell type incubated separately and was markedly enhanced in the coincubation studies. The present investigation demonstrates that the presence of PMNL modifies the metabolism of arachidonate by human platelets. Moreover, this cell-cell interaction markedly depends on the concentration of substrate. PMNL in excess may attenuate synthesis by platelets of their toxic products.


1985 ◽  
Vol 54 (03) ◽  
pp. 599-602 ◽  
Author(s):  
M Léon Alhenc-Gelas ◽  
M Aiach ◽  
A Gorenflot ◽  
J P Andreux

SummaryImmunoreactive AT III was found in human platelets. AT III antigen was quantified in platelets taken from each of 17 healthy donors by a specific competitive enzyme immunoassay using purified AT III and AT III antibodies. AT III antigen levels in extracts of washed platelets disrupted by freezing and thawing ranged from 32 to 140 ng per 109 platelets with a mean value of 70.3 ± 27.3. When stimulated by arachidonic acid, the platelets released AT III antigen together with immunoreactive fibrinogen. These results show that AT III is present in platelets at a level corresponding to approximately 0.01% of total antithrombin in normal blood, and suggest that platelet AT III, like fibrinogen, is contained in the storage granules.


1997 ◽  
Vol 77 (04) ◽  
pp. 741-747 ◽  
Author(s):  
R L Kinlough-Rathbone ◽  
D W Perry ◽  
M L Rand ◽  
M A Packham

SummaryEffects of plasmin on platelets, that influence subsequent responses to aggregating agents, are relevant to attempts to prevent rethrombosis following administration of fibrinolytic agents. We describe plasmin-induced inhibition of platelet responses to thrombin, but potentiation of responses to other aggregating agents. Washed human platelets were labeled with 14C-serotonin, treated for 30 min at 37° C with 0, 0.1 or 0.2 CU/ml of plasmin, followed by aprotinin, washed and resuspended in a Tyrode-albumin solution with apyrase. Incubation with 0.2 CU/ml of plasmin almost completely inhibited thrombin-induced (0.1 U/ml) aggregation, release of 14C-serotonin, and increase in cytosolic [Ca2+]. In contrast, with plasmin-pretreated platelets, aggregation and release of 14C-serotonin were strongly potentiated in response to low concentrations of the thrombin receptor-activating peptide SFLLRN, ADP, platelet-activating factor, collagen, arachidonic acid, the thromboxane mimetic U46619, and the calcium ionophores A23187 and ionomycin. Aspirin or RGDS partially inhibited potentiation. Plasmin-pretreated platelets resuspended in plasma anticoagulated with FPRCH2C1 (PPACK) also showed enhanced responses to aggregating agents other than thrombin. The contrasting effects on responses to thrombin and SFLLRN are noteworthy. Plasmin cleaves GPIIb/IIIa so that it becomes a competent fibrinogen receptor, and binding of 125I-fibrinogen during ADP-induced aggregation was greatly potentiated within 10 s. Potentiation of aggregation by other agonists may be due to increased binding of released fibrinogen. Thus, platelets freed from a thrombus may have increased responsiveness to low concentrations of aggregating agents other than thrombin. These results provide further support for the use of inhibitors of platelet reactions in conjunction with administration of fibrinolytic agents.


1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


1983 ◽  
Vol 49 (02) ◽  
pp. 096-101 ◽  
Author(s):  
V C Menys ◽  
J A Davies

SummaryPlatelet adhesion to rabbit aortic subendothelium or collagen-coated glass was quantitated in a rotating probe device by uptake of radio-labelled platelets. Under conditions in which aspirin had no effect, dazoxiben, a selective inhibitor of thromboxane synthetase, reduced platelet adhesion to aortic subendothelium by about 40% but did not affect adhesion to collagen-coated glass. Pre-treatment of aortic segments with 15-HPETE, a selective inhibitor of PGI2-synthetase, abolished the inhibitory effect of dazoxiben on adhesion. Concentrations of 6-oxo-PGFlα in the perfusate were raised in the presence of dazoxiben alone, and following addition of thrombin (10 units/ml) there was a 2-3 fold increase in concentration. Perfusion of damaged aorta with platelets labelled with (14C)-arachidonic acid in the presence of thrombin and dazoxiben resulted in the appearance of (14C)-labelled-6-oxo-PGFiα. Inhibition of thromboxane synthetase limits platelet adhesion probably by promoting vascular synthesis of PGI2 from endoperoxides liberated from adherent platelets, which subsequently promotes detachment of cells from the surface.


1984 ◽  
Vol 52 (03) ◽  
pp. 333-335 ◽  
Author(s):  
Vider M Steen ◽  
Holm Holmsen

SummaryThe inhibitory effect of cAMP-elevating agents on shape change and aggregation in human platelets was studied to improve the understanding of the sequential relationship between these two responses.Human platelet-rich plasma was preincubated for 2 min at 37° C with prostaglandin E1 or adenosine, agents known to elevate the intracellular level of cAMP. Their inhibitory effects on ADP-induced shape change and aggregation were determined both separately and simultaneously. The dose-inhibition patterns for shape change and aggregation were similar for both PGE1 and adenosine. There was no distinct difference between the inhibitory action of these two inhibitors.These observations suggest that elevation of the intracellular concentration of cAMP interferes with an early step in the stimulus-response coupling that is common for aggregation and shape change.


1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.


1991 ◽  
Vol 131 (1) ◽  
pp. 87-94 ◽  
Author(s):  
A. W. Nangalama ◽  
G. P. Moberg

ABSTRACT In several species, glucocorticoids act directly on the pituitary gonadotroph to suppress the gonadotrophin-releasing hormone (GnRH)-induced secretion of the gonadotrophins, especially LH. A mechanism for this action of these adrenal steroids has not been established, but it appears that the glucocorticoids influence LH release by acting on one or more post-receptor sites. This study investigated whether glucocorticoids disrupt GnRH-induced LH release by altering the liberation of arachidonic acid from plasma membrane phospholipids, a component of GnRH-induced LH release. Using perifused ovine pituitary tissue, it was established that exposure of gonadotrophs to 1–1000 nmol cortisol/l for 4 h or longer significantly reduced GnRH-stimulated LH release with the maximal inhibitory effect being observed after 6 h of exposure to cortisol. This suppressive effect of cortisol could be reversed by administration of arachidonic acid, which in its own right could stimulate LH release from ovine pituitary tissue. Furthermore, the inhibitory effect of cortisol on GnRH-stimulated LH release could be directly correlated with decreased pituitary responsiveness to GnRH-stimulated arachidonic acid liberation, consistent with our hypothesis that glucocorticoids can suppress GnRH-induced secretion of LH by reducing the amount of arachidonic acid available for the exocytotic response of GnRH. Journal of Endocrinology (1991) 131, 87–94


Sign in / Sign up

Export Citation Format

Share Document