Three-dimensional confocal microscopy of the mammalian inner ear

2010 ◽  
Vol 8 (3) ◽  
pp. 120-128 ◽  
Author(s):  
Glen H. MacDonald ◽  
Edwin W Rubel
Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


1997 ◽  
Vol 3 (S2) ◽  
pp. 305-306
Author(s):  
David W. Piston

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. It provides three-dimensional resolution and eliminates background equivalent to an ideal confocal microscope without requiring a confocal spatial filter, whose absence enhances fluorescence collection efficiency. This results in inherent submicron optical sectioning by excitation alone. In practice, TPEM is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 limits the average input power to less than 10 mW, only slightly greater than the power normally used in confocal microscopy. Because of the intensity-squared dependence of the two-photon absorption, the excitation is limited to the focal volume.


2017 ◽  
Vol 4 (8) ◽  
pp. 170685 ◽  
Author(s):  
Alessandro Palci ◽  
Mark N. Hutchinson ◽  
Michael W. Caldwell ◽  
Michael S. Y. Lee

The inner ear morphology of 80 snake and lizard species, representative of a range of ecologies, is here analysed and compared to that of the fossil stem snake Dinilysia patagonica , using three-dimensional geometric morphometrics. Inner ear morphology is linked to phylogeny (we find here a strong phylogenetic signal in the data that can complicate ecological correlations), but also correlated with ecology, with Dinilysia resembling certain semi-fossorial forms ( Xenopeltis and Cylindrophis ), consistent with previous reports. We here also find striking resemblances between Dinilysia and some semi-aquatic snakes, such as Myron (Caenophidia, Homalopsidae). Therefore, the inner ear morphology of Dinilysia is consistent with semi-aquatic as well as semi-fossorial habits: the most similar forms are either semi-fossorial burrowers with a strong affinity to water ( Xenopeltis and Cylindrophis ) or amphibious, intertidal forms which shelter in burrows ( Myron). Notably, Dinilysia does not cluster as closely with snakes with exclusively terrestrial or obligate burrowing habits (e.g. scolecophidians and uropeltids). Moreover, despite the above similarities, Dinilysia also occupies a totally unique morphospace, raising issues with linking it with any particular ecological category.


Langmuir ◽  
2015 ◽  
Vol 31 (35) ◽  
pp. 9684-9693 ◽  
Author(s):  
Donghee Lee ◽  
Md. Mahmudur Rahman ◽  
You Zhou ◽  
Sangjin Ryu

2016 ◽  
Vol 41 (9) ◽  
pp. 2013 ◽  
Author(s):  
Baoliang Ge ◽  
Yifan Wang ◽  
Yujia Huang ◽  
Cuifang Kuang ◽  
Yue Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document