Effect of non-elastic closed-basket weave ankle taping on muscle activity of tibialis anterior, peroneus longus, medial, and lateral gastrocnemius during jump landing on a hard, flat surface in healthy individuals: a pilot study

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Fe Therese Chavez ◽  
Emmanuel Carpio ◽  
Philip Andrew Aguilar ◽  
Daniella Ang ◽  
Blessie Busog ◽  
...  
2013 ◽  
Vol 29 (4) ◽  
pp. 421-427 ◽  
Author(s):  
Birgit Unfried ◽  
Arnel Aguinaldo ◽  
Daniel Cipriani

Running on a road for fitness, sport, or recreation poses unique challenges to the runner, one of which is the camber of the surface. Few studies have examined the effects of camber on running, namely, kinematic studies of the knee and ankle. There is currently no information available regarding muscle response to running on a cambered road surface. The purpose of this study was to investigate the effects of a cambered road on lower extremity muscle activity, as measured by electromyography in recreational runners. In addition, this study examined a true outdoor road surface, as opposed to a treadmill surface. The mean muscle activity of the tibialis anterior, lateral gastrocnemius, vastus medialis oblique, biceps femoris, and gluteus medius were studied. Fifteen runners completed multiple running trials on cambered and level surfaces. During the stance phase, mean activities of tibialis anterior, lateral gastrocnemius, and vastus medialis oblique were greater on the gutter side than the crown side. There were no differences in mean muscle activity during the swing phase. The findings of this study suggest that running on a road camber alters the activity of select lower extremity muscles possibly in response to lower extremity compensations to the cambered condition.


2018 ◽  
Vol 108 (6) ◽  
pp. 449-457 ◽  
Author(s):  
Kit-lun Yick ◽  
Ka-lai Yeung ◽  
Del P. Wong ◽  
Yee-nee Lam ◽  
Sun-pui Ng

Background: The midsole is an essential assembly of footwear for retaining the shape of the shoe, delivering support to the foot, and serving as a cushioning and stability device for walking. To improve leg muscle balance and muscle co-contraction, we propose a new midsole design for high heels with different hardness levels at the forefoot region. Methods: Five healthy women participated in the study, with a mean ± SD age of 21.80 ± 4.09 years, and duration of high-heeled shoe wear of 5.20 ± 4.09 years. Two midsole conditions, control and multiple-hardness midsole (MHM), with heel heights of 2 (flat), 5, and 8 cm were used. The main outcome measures were to examine the acute effects of MHM by electromyography on muscle activity balance and co-contraction at varying heel heights during shuttle walk. Results: Use of the MHM significantly reduced the muscle activity ratio between the medial and lateral gastrocnemius muscles (P = .043) during push-off to heel strike with a heel height of 5 cm (−22.74%) and heel strike to midstance with a heel height of 8 cm (−22.26%). The increased co-contraction indices of the tibialis anterior–peroneus longus muscles (14.35% with an 8-cm heel height) and tibialis anterior–soleus muscles (15.18% with a 5-cm heel height) are significant (P = .043), with a large effect size (d = 0.8). Conclusions: These results deliver important implications in advancing the engineering of MHM design without changing the in-shoe volume to enhance leg muscle balance and co-contraction during walking.


1999 ◽  
Vol 8 (3) ◽  
pp. 209-218 ◽  
Author(s):  
Mitchell L. Cordova ◽  
Lisa S. Jutte ◽  
J. Ty Hopkins

Many types of rehabilitation exercises are used to reestablish lower extremity neuromuscular function and strength following ankle injuries. It has not been established which exercise induces the greatest leg muscle activity, which might allow patients to recover more quickly from their injuries. The purpose of this investigation was to establish which exercises induce the most muscle activity in the medial gastrocnemius (MG), peroneus longus (PL), and tibialis anterior (TA), as measured by integrated electromyography (I-EMG). Participants (N= 24, age = 22 ± .59, mass = 63.5 ± 2.1 kg, ht = 165.7 ± 1.2 cm) conducted five repetitions of each of four exercise conditions for 30 s: one-legged stance (OLS), OLS on trampoline (OLST), T-Band kicks (TBK), and OLS perturbations (OLSP). It was found that the TBK exercise induces greater I-EMG in all three muscles, the OLST exercise stimulates more I-EMG activity in the MG and TA, and the OLSP exercise induces greater I-EMG activity in the TA.


2020 ◽  
pp. 1-8
Author(s):  
Javad Sarvestan ◽  
Alan R. Needle ◽  
Peyman Aghaie Ataabadi ◽  
Zuzana Kovačíková ◽  
Zdeneˇk Svoboda ◽  
...  

Context: Chronic ankle instability is documented to be followed by a recurrence of giving away episodes due to impairments in mechanical support. The application of ankle Kinesiotaping (KT) as a therapeutic intervention has been increasingly raised among athletes and physiotherapists. Objectives: This study aimed to investigate the impacts of ankle KT on the lower-limb kinematics, kinetics, dynamic balance, and muscle activity of college athletes with chronic ankle instability. Design: A crossover study design. Participants: Twenty-eight college athletes with chronic ankle sprain (11 females and 17 males, 23.46 [2.65] y, 175.36 [11.49] cm, 70.12 [14.11] kg) participated in this study. Setting: The participants executed 3 single-leg drop landings under nontaped and ankle Kinesio-taped conditions. Ankle, knee, and hip kinematics, kinetics, and dynamic balance status and the lateral gastrocnemius, medial gastrocnemius, tibialis anterior, and peroneus longus muscle activity were recorded and analyzed. Results: The application of ankle KT decreased ankle joint range of motion (P = .039) and angular velocities (P = .044) in the sagittal plane, ground reaction force rate of loading (P = .019), and mediolateral time to stability (P = .035). The lateral gastrocnemius (0.002) and peroneus longus (0.046) activity amplitudes also experienced a significant decrease after initial ground contact when the participants’ ankles were taped, while the application of ankle KT resulted in an increase in the peroneus longus (0.014) activity amplitudes before initial ground contact. Conclusions: Ankle lateral supports provided by KT potentially decreases mechanical stresses applied to the lower limbs, aids in dynamic balance, and lowers calf muscle energy consumption; therefore, it could be offered as a suitable supportive means for acute usage in athletes with chronic ankle instability.


2005 ◽  
Vol 14 (3) ◽  
pp. 235-247 ◽  
Author(s):  
Susan Miniello ◽  
Geoffrey Dover ◽  
Michael Powers ◽  
Mark Tillman ◽  
Erik Wikstrom

Context:Previous studies have suggested that cryotherapy affects neuromuscu-lar function and therefore might impair dynamic stability. If cryotherapy affects dynamic stability, clinicians might alter their decisions regarding returning athletes to play immediately after treatment.Objective:To assess the effects of lower leg cold immersion on muscle activity and dynamic stability of the lower extremity.Design:Within-subject time-series design with 1 pretest and 2 posttests.Setting:A climate-controlled biomechanics laboratory.Participants:17 healthy women.Interventions:20-minute cold-water immersion.Main Outcome Measures:Preparatory and reactive electromyographic activity of the tibialis anterior and peroneus longus and time to stabilization after a jump landing.Results:Preparatory activity of the tibialis anterior increased after treatment, whereas preparatory and reactive peroneus longus activity decreased. Both returned to baseline after a 5-minute recovery. Time to stabilization did not change.Conclusions:Lower leg cold-immersion therapy does not impair dynamic stability in healthy women during a jump-landing task. Return to participation after a cryotherapy treatment is not contraindicated for healthy athletes.


2020 ◽  
Vol 123 (1) ◽  
pp. 70-89
Author(s):  
Dwight Higgin ◽  
Alexander Krupka ◽  
Omid Haji Maghsoudi ◽  
Alexander N. Klishko ◽  
T. Richard Nichols ◽  
...  

Sensorimotor training providing motion-dependent somatosensory feedback to spinal locomotor networks restores treadmill weight-bearing stepping on flat surfaces in spinal cats. In this study, we examined if locomotor ability on flat surfaces transfers to sloped surfaces and the contribution of length-dependent sensory feedback from lateral gastrocnemius (LG) and soleus (Sol) to locomotor recovery after spinal transection and locomotor training. We compared kinematics and muscle activity at different slopes (±10° and ±25°) in spinalized cats ( n = 8) trained to walk on a flat treadmill. Half of those animals had their right hindlimb LG/Sol nerve cut and reattached before spinal transection and locomotor training, a procedure called muscle self-reinnervation that leads to elimination of autogenic monosynaptic length feedback in spinally intact animals. All spinal animals trained on a flat surface were able to walk on slopes with minimal differences in walking kinematics and muscle activity between animals with/without LG/Sol self-reinnervation. We found minimal changes in kinematics and muscle activity at lower slopes (±10°), indicating that walking patterns obtained on flat surfaces are robust enough to accommodate low slopes. Contrary to results in spinal intact animals, force responses to muscle stretch largely returned in both SELF-REINNERVATED muscles for the trained spinalized animals. Overall, our results indicate that the locomotor patterns acquired with training on a level surface transfer to walking on low slopes and that spinalization may allow the recovery of autogenic monosynaptic length feedback following muscle self-reinnervation. NEW & NOTEWORTHY Spinal locomotor networks locomotor trained on a flat surface can adapt the locomotor output to slope walking, up to ±25° of slope, even with total absence of supraspinal CONTROL. Autogenic length feedback (stretch reflex) shows signs of recovery in spinalized animals, contrary to results in spinally intact animals.


2021 ◽  
Vol 38 (5) ◽  
pp. 332-336
Author(s):  
Daniel Araya ◽  
Juan López ◽  
Germán Villalobos ◽  
Rodrigo Guzmán-Venegas ◽  
Oscar Valencia

Introduction: Surface electromyography has been a technique used to describe muscle activity during running. However, there is little literature that analyses the behaviour of muscle coactivation in runners, describing the effect between two techniques associated with the initial contact, such as the use of rearfoot (RF) and forefoot (FF). Material and method: The purpose of this study was to compare muscle coactivation levels developed in the lower limb during two running techniques, FF vs RF. Fourteen amateur runners were evaluated (eight men, six women; age= 23.21 ± 3.58 years, mass= 63.89 ± 8.13 kg, height= 1.68 ± 0.08m). Surface electromyography was used to measure muscle activity during both running techniques evaluated on a treadmill, considering the muscle pairs: Rectus femoris- Biceps femoris (RFe-BF), Lateral Gastrocnemius–Tibialis Anterior (LG-TA), and Medial Gastrocnemius - Tibialis Anterior (MG-TA). These were calculated in three windows considering ten running cycles (0-5%, 80-100%, and 0-100%). To compare FF vs RF t-student test for paired data was used. Results: It was observed significant differences in the MG-TA pair (FF= 18.42 ± 11.84% vs RF = 39.05 ± 13.28%, p = 0.0018 during 0-5%, and RFe-BF pair (FF = 42.38 ± 18.11% vs RF = 28.37 ± 17.2%, p = 0.0331) during 80-100% of the race. Conclusion: Our findings show that the behaviour of muscle coactivation is different between FF vs RF techniques if we analyze little windows in the running cycle. This could be associated with an increase in the joint stability between these short intervals, represented in the initial and final regions of the running cycle.


Sign in / Sign up

Export Citation Format

Share Document