Lung Mechanics and Pathological Features During Ventilation-Induced Lung Injury

2006 ◽  
pp. 153-190
Author(s):  
Jianli Li ◽  
Saixian Ma ◽  
Xiujie Chang ◽  
Songxu Ju ◽  
Meng Zhang ◽  
...  

AbstractThe study aimed to investigate the efficacy of PCV-VG combined with individual PEEP during laparoscopic surgery in the Trendelenburg position. 120 patients were randomly divided into four groups: VF group (VCV plus 5cmH2O PEEP), PF group (PCV-VG plus 5cmH2O PEEP), VI group (VCV plus individual PEEP), and PI group (PCV-VG plus individual PEEP). Pmean, Ppeak, Cdyn, PaO2/FiO2, VD/VT, A-aDO2 and Qs/Qt were recorded at T1 (15 min after the induction of anesthesia), T2 (60 min after pneumoperitoneum), and T3 (5 min at the end of anesthesia). The CC16 and IL-6 were measured at T1 and T3. Our results showed that the Pmean was increased in VI and PI group, and the Ppeak was lower in PI group at T2. At T2 and T3, the Cdyn of PI group was higher than that in other groups, and PaO2/FiO2 was increased in PI group compared with VF and VI group. At T2 and T3, A-aDO2 of PI and PF group was reduced than that in other groups. The Qs/Qt was decreased in PI group compared with VF and VI group at T2 and T3. At T2, VD/VT in PI group was decreased than other groups. At T3, the concentration of CC16 in PI group was lower compared with other groups, and IL-6 level of PI group was decreased than that in VF and VI group. In conclusion, the patients who underwent laparoscopic surgery, PCV-VG combined with individual PEEP produced favorable lung mechanics and oxygenation, and thus reducing inflammatory response and lung injury.Clinical Trial registry: chictr.org. identifier: ChiCTR-2100044928


2009 ◽  
Vol 167 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Dani-Louise Dixon ◽  
Hilde R. De Smet ◽  
Andrew D. Bersten

2016 ◽  
Vol 311 (2) ◽  
pp. L208-L218 ◽  
Author(s):  
Dean O. Kuethe ◽  
Piotr T. Filipczak ◽  
Jeremy M. Hix ◽  
Andrew P. Gigliotti ◽  
Raúl San José Estépar ◽  
...  

Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI. Sprague-Dawley rats were untreated or treated with intratracheal lipopolysaccharide or PBS. After 48 h, animals were mechanically ventilated for up to 15 h to induce VILI. Free induction decay (FID)-projection images were made hourly. Image data were collected continuously for 30 min and divided into 13 phases of the ventilatory cycle to make cinematic images. Interleaved measurements of respiratory mechanics were performed using a flexiVent ventilator. The degree of lung infiltration was quantified in serial images throughout the progression or resolution of VILI. MRI detected VILI significantly earlier (3.8 ± 1.6 h) than it was detected by altered lung mechanics (9.5 ± 3.9 h, P = 0.0156). Animals with VILI had a significant increase in the Index of Infiltration ( P = 0.0027), and early regional lung infiltrates detected by MRI correlated with edema and inflammatory lung injury on histopathology. We were also able to visualize and quantify regression of VILI in real time upon institution of protective mechanical ventilation. Magnetic resonance lung imaging can be utilized to investigate mechanisms underlying the development and propagation of ALI, and to test the therapeutic effects of new treatments and ventilator strategies on the resolution of ALI.


Sign in / Sign up

Export Citation Format

Share Document