scholarly journals Floodplain steppe meadows of the Eastern part of the Altai-Sayan mountain region

2017 ◽  
pp. 78-93
Author(s):  
N. I. Makunina ◽  
L. P. Parshutina

In South Siberian mountains floodplain steppe meadows can be found only within steppe and forest-steppe belts. In the eastern part of the Altai-Sayan mountain region (ASMR) these belts occupy large intermontane depressions, making up the submeridional range at 56–50° N (Fig. 1). The northern part of this range consists of four large depressions (the Nazarovo, North Minusinsk, Middle Minusinsk and South Minusinsk). To the north, the Nazarovo depression merges into the West Siberian plain. The southern border of the South Minusinsk depression is the West Sayan. The southern part of range includes the Turan-Uyuk and Central Tuvinian depressions. This study is based on the analysis of 260 geobotanical relevés made in the valleys of 47 rivers (21 — in Minusinsk depressions, 26 — in Tuvinian depressions). The set includes the relevés of steppe meadow of different river types (large, medium, small), located in different parts of the studied region. The typical feature of these communities is the permanent coexistence of steppe and meadow species with negligible part of meadow-steppe herbs. All steppe meadows under discussion are similar in appearance. Tall grasses, various in different associations, form a sparse upper sublayer. Depending on the intensity of use, the main part of the herbage can be located in the middle sublayer or in the bottom one. In the middle sublayer, grasses predominate (Bromopsis inermis, Poa angustifolia, Elytrigia repens). Herbs tolerant to grazing (Potentilla bifurca, Amoria repens) make up the bottom sublayer. We have revealed 6 associations of steppe meadows. Ass. Potentillo bifurcae–Poetum angustifoliae, Potentillo bifurcae–Leymetum dasystachyos, Potentillo bifurcae–Hordeetum brevisubulati are typical for Tuvinian depressions, ass. Artemisio laciniatae–Koelerietum delavignei, Trifolio pratensis–Koelerietum delavignei и Trifolio pratensis–Festucetum valesiacae — for Minusinsk ones (Table 1). The basic bioclimatic barrier of ASMR — the West Sayan divides their areas. The ordination of new associations along the gradients of moisture supply (horizontal axis) and richness-salinity of soils (vertical axis) demonstrates that areas of associations form two ranges — the Minusinsk and Tuvinian. Every association of the Minusinsk range has corresponding association of the Tuvinian range (Fig. 2). DCA-ordination (Fig. 3) and cluster analysis (Fig. 4) of syntaxa from the South Urals, West Siberia, Yakutia and new associations have detected the specificity of the last ones, so a new alliance Potentillo bifurcae–Poion angustifoliae (order Galietalia veri, class Molinio-Arrhenatheretea) has been described. It comprises steppe meadows of the Eastern part of ASMR.

2017 ◽  
pp. 116-118
Author(s):  
E. A. Volkova

The monograph presents an overview of the forest-steppe vegetation of the West Siberian Plain and the Altai-Sayan mountain region. The questions of bioclimatic zonation of the Altai-Sayan mountain region are discussed. The biodiversity of foreststeppe is characterized, the floristic classification is performed, the scheme of eco-phytocoenotic classification is given, the basic types of plant communities are described in comparative terms. The diversity of forest-steppe landscapes is revealed, the structure of their vegetation is analyzed. The phytogeographical division of forest-steppe is worked out.


2017 ◽  
pp. 114-116
Author(s):  
B. M. Mirkin ◽  
L. G. Naumova

The monograph presents an overview of the forest-steppe vegetation of the West Siberian Plain and the Altai-Sayan mountain region. The questions of bioclimatic zonation of the Altai-Sayan mountain region are discussed. The biodiversity of foreststeppe is characterized, the floristic classification is performed, the scheme of eco-phytocoenotic classification is given, the basic types of plant communities are described in comparative terms. The diversity of forest-steppe landscapes is revealed, the structure of their vegetation is analyzed. The phytogeographical division of forest-steppe is worked out.


2021 ◽  
Vol 40 ◽  
pp. 68-74
Author(s):  
Svyatoslav S. Knyazev ◽  
Pavel Yu. Gorbunov ◽  
Sergey F. Melyakh ◽  
Svetlana V. Nedoshivina ◽  
Nikolai D. Grebennikov ◽  
...  

First record of the nemoral Eastern Palaearctic species Catocala helena Eversmann, 1856 is reported from Samara Region as new to Europe. New localities in the South Urals and West Siberia are reported for the first time. The present records expand the species distribution for more than 2500 km to the west. The general species’ distribution and bionomics is provided. Species’ habitats in the South Urals are illustrated.


2014 ◽  
pp. 45-70 ◽  
Author(s):  
A. Yu. Korolyuk

The West-Siberian Plain extends more than 1200 km from west to east. Its southern part is occupied by steppe and forest-steppe zones with pre-dominance of herbaceous plant communities. Steppes and xeric meadows are widespread on this territory and characterized by a high diversity and complex spatial structure. This study presents the analysis of 874 relevés describing xeric meadows and steppes of the class Festuco-Brometea from the West Siberian Plain. Numerical analysis with using of plant indicator values showed that some ecological factors, such as soil moisture, salinity and sand content are important in differentiation of grasslands. Three zonal associations form the sequence on the latitudinal gradient from 56º to 51º of northern latitude: Galatello biflorae–Calamagrostietum epigeii (xeric meadows and meadow steppes on solonetz soils in forest-steppe zone), Helictotricho desertori–Stipetum rubentis (rich bunchgrass steppes of southern part of forest-steppe zone and northern part of steppe zone), Artemisio austriacae–Stipetum capillatae (typical bunchgrass steppes of steppe zone). Zonal associations form complexes with other grasslands of Festuco-Brometeae. In forest-steppe landscapes zonal communities usually adjoined with Galio borealis–Artemisietum ponticae in more mesic habitats and with halophyte association Limonio gmelini–Phleetum phleoides. In steppe regions zonal associations make an assemblage with relatively mesic grasslands of Trommsdorffio maculatae–Stipetum pennatae and halophyte communities of Limonio gmelini–Stipetum capillatae on solonetz soils. Three associations form the sequence related with increasing of sand content in soils: Gypsophilo paniculatae–Artemisietum glaucae, Sileno borysthenicae–Cleistogenetum squarrosae, Scorzonero ensifoliae–Festucetum valesiacae. All grasslands usually are under intense grazing that cause changes in plant communities, first of all, the reduction of meso-xerophyte species diversity. The class Festuco-Brometea in the West Siberian plain is divided into two orders. The order Festucetalia valesiacae unites xeric meadows and meadow steppes in forest-steppe landscapes. The class and order are diagnosed mainly by meso-xerophyte species with wide Eurosiberian distribution: Anemone sylvestris, Artemisia glauca, A. latifolia, Astragalus danicus, Campanula sibirica, Centaurea scabiosa, Dianthus versicolor, Festuca pseudovina, Festuca valesiaca, Filipendula vulgaris, Fragaria viridis, Galium ruthenicum, Galium verum, Koeleria cristata, Medicago falcata, Phleum phleoides, Phlomoides tuberosa, Plantago urvillei, Poa angustifolia, Polygala comosa, Scabiosa ochroleuca, Seseli libanotis, Stipa capillata, Stipa pennata, Tephroseris integrifolia, Trommsdorffia maculata, Veronica spicata. This order is presented by the alliance Galatellion biflorae located to the west from the Ob River (Korolyuk, Kiprijanova, 1998). Its communities differ from others by presence of salt-tolerant species: Artemisia pontica, Artemisia rupestris, Carex caryophyllea, Galatella biflora, Inula britannica, Melampyrum cristatum, Peucedanum morisonii, Plantago maxima, Silene multiflora. To the east from the Ob River this alliance is replaced by Poo urssulensis–Artemision glaucae, in the South Urals by Festucion valesiacae. The xeric meadows of Festuco-Brometea north from forest-steppe zone are replaced by mesic meadows of Molinio-Arrhenatheretea. The order Helictotricho-Stipetalia represents the typical steppes and xeric variants of meadow steppes. Its distribution covers steppe zone and southern part of forest-steppe zone. The main part of its diagnostic combination is formed by xerophyte steppe plants: Achillea nobilis, Adonis villosa, Androsace maxima, Artemisia austriaca, Carex supina, Galatella angustissima, Helictotrichon desertorum, Jurinea multiflora, Onosma simplicissima, Oxytropis pilosa, Pilosella echioides, Potentilla bifurca, P. humifusa, Salvia stepposa, Scorzonera austriaca, Seseli ledebourii, Spiraea crenata, Stipa zalesskii, Taraxacum erythrospermum, Thymus marschallianus, Verbascum phoeniceum, Veronica incana. Three alliances form the sequence along moisture gradient: more mesic rich steppes of Helictotricho desertori–Stipion rubentis (diagnostic species: Helictotrichon desertorum, Stipa zalesskii, Thymus marschallianus, Artemisia latifolia, Filipendula vulgaris, Fragaria viridis, Phlomoides tuberosa, Plantago urvillei, Seseli libanotis, Artemisia pontica, A. rupestris, Galatella biflora, Peucedanum morisonii, Silene multiflora), typical steppes of Artemisio austriacae–Festucion valesiacae (diagnostic species: Androsace maxima, Artemisia austriaca, Carex supina, Po­ten­tilla bifurca, Scorzonera austriaca, Taraxacum erythrospermum), and dry steppes of Stipion korshinskyi Toman1969 (diagnostic species: Kochia prostrata, Krascheninnikovia ceratoides, Leymus ramosus, Phlomoides agraria, Stipa korshinskyi, Stipa lessingiana).


2021 ◽  
Vol 38 ◽  
pp. 00126
Author(s):  
Alexander I. Syso ◽  
Andrey Y. Korolyuk ◽  
Boris A. Smolentsev

The effect of weather conditions and such soil properties as pH, salt content, as well as different forms of macroand trace elements, on phytocoenoses biodiversity and chemical element contents in the aboveground phytomass was investigated in the forest-steppe zone of the West Siberian plain. Soil chemical element composition and salinity content were found to affect the phytomass content of N, P, K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr, Li.


2020 ◽  
pp. 13-26
Author(s):  
Ya. M. Golovanov ◽  
L. M. Abramova

The synthaxonomy and ecology of communities with predominance of Hordeum jubatum L., included in the «black list» of the Republic of Bashkortostan (Abramova, Golovanov, 2016a), the preliminary «black list» of the Orenburg Region (Abramova et al., 2017) and the «Black book of flora of Middle Russia» (Vinogradova et al., 2010), are discussed in the article, which continues a series of publications on the classification of communities with alien species in the South Urals (Abramova, 2011, 2016; Abramova, Golovanov, 2016b). H. jubatum was first found in the South Urals in 1984 as an adventive plant occurring along streets in the town of Beloretsk, as well as in gardens where it was grown as an ornamental plant. During the 1980s, it was met also at some railway stations and in several rural localities. Its active distribution throughout the South Urals started in XXI century (Muldashev et al., 2017). Currently, H. jubatum, most naturalized in the native salted habitats of the steppe zone, is often found in disturbed habitats in all natural zones within the region. The short vegetating period and resistance to drought allowed it to be naturalized also in dry steppes, where it increasingly acts as the main weed on broken pastures. The aim of the work, conducted during 2011–2017, was further finding the centers of H. jubatum invasion in 3 regions adjacent to the South Urals — the Republic of Bashkortostan and the Chelyabinsk and Orenburg Regions (Fig. 1). In the main sites of H. jubatum invasion 71 relevès were performed on 10–100 m² sample plots with the information of location, date, the plot size, the total cover, average and maximum height of herb layer. Classification was carried out following the Braun-Blanquet method (Braun-Blanquet, 1964) with using the Kopecký–Hejný approach (Kopecký, Hejný, 1974). The community ecology was assessed by weighted average values according to the optimal ecological scales by E. Landolt with usfge of the software of IBIS (Zverev, 2007). PCA-ordination method with usage CANOCO 4.5 software package was applied to identify patterns of environmental differentiation of invasive communities. The current wide distribution area of H. jubatum and its naturalization in synanthropic, meadow and saline communities in the South Urals, as well as its occurrence within mountain-forest belt, forest-steppe and steppe zones both in the Cis- and Trans-Urals, indicates species wide ecological amplitude, high adaptive capability and invasive potential. Its vast thickets are known in the steppe zone, both in disturbed steppes around settlements and along the banks of water bodies. The invasion sites are smaller in the northern regions and mountain forest belt, where these are located in settlements or along communication lines. Therefore, the steppe zone is more favorable for invasive populations, and their distribution will continue from the south to the north. Communities with predominance of H. jubatum, described earlier (Abramova, Golovanov, 2016b) in the Cis-Urals as two derivative communities (associations Hordeum jubatum [Scorzonero–Juncetea gerardii], Hordeum jubatum [Artemisietea]) and Polygono avicularis–Hordeetum jubati, were met in other regions of the South Urals. Also a new derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati], occuring in the northern part of the Cis-Urals and Trans-Urals, was established. In new habitats this species forms three types of communities: ass. Polygono avicularis–Hordeetum jubati (Fig. 2) the most widespread in anthropogenic habitats throughout the South Urals; derivative community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii] (Fig. 5) which replaces saline meadows mainly in the steppe zone of the region; derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (Fig. 4) which y replaces low-herb meadows in the forest-steppe zone and mountain-forest belt. PCA ordination (Fig. 6) shows that moisture (H) and soil richness-salinization (S) factors are in priority in differentiation of communities with predominance H. jubatum. The first axis is mainly related to the salinization and soil richness. The community pattern along the second axis is associated with wetting factor. The cenoses of the derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (less salted substrates in drier conditions in the northern part of the forest-steppe zone and the mountain forest belt) are grouped in the upper part of the ordination diagram, while communities of ass. Polygono avicularis–Hordeetum jubati (drier conditions in settlements, the steppe zone) in its low left part. Thus, axis 1 also reflects the intensity of trampling. Another group is formed by cenoses of the derivate community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii], (salt substrates with a high level of moisturization, on not very damaged water body banks). All communities with H. jubatum are well differentiated in the space of the main ordination axes that indirectly confirms the correctness of our syntaxonomic decision. Undoubted is further expansion of H. jubatum with its entering both anthropogenic and natural plant communities within the South Urals that suggests a constant monitoring in centers of species invasion.


2019 ◽  
pp. 118-134
Author(s):  
G. R. Khasanova ◽  
S. M. Yamalov ◽  
M. V. Lebedeva ◽  
Z. Kh. Shigapov

Segetal, or weed, communities are the stands of the weed plant species which are formed under the influence of edafo-climatic conditions and the mode of soil disturbance within the processing of crop rotation (agrotechnical factor) (Mirkin, Naumova, 2012). This paper is the second part of weed community study in the South Ural, assigned to the class Papaveretea rhoeadis S. Brullo et al. 2001, syntaxon unites the weed communities of winter cereals with two orders: Aperetalia spica-venti J. Tx. et Tx. in Malato-Beliz et al. 1960 and Papaveretalia rhoeadis Hüppe et Hofmeister ex Theurillat et al. 1995; and three alliances (Khasanova et al., 2018). Data on diversity, floristic, ecological and spatial differentiation of mesoxeric and xeric weed communities of the alliances Caucalidion Tx. ex von Rochow 1951 and Lactucion tataricae Rudakov in Mirkin et al. 1985 in steppe and southern part of the forest-steppe zones are given (Table 1; Fig. 1). The dataset contains 756 relevés: 647 made by authors during the field seasons of 2002–2018, while 109 taken from published monography (Mirkin et al., 1985). The alliance Caucalidion combines weed communities on rich carbonate chernozem soils in the forest-steppe zone. Diagnostic species are Galeopsis bifida, G. ladanum, Galium aparine, Erodium cicutarium, Persicaria lapathifolia, Silene noctiflora, Thlaspi arvense. This alliance occupies the central position within class between communities of forest zone of the alliance Scleranthion annui and these of the steppe zone of the alliance Lactucion tataricae. The last alliance combines weed communities of the steppe zone and southern part of the forest-steppe one on south and typical chernozem soils. Two species are diagnostic: Lactuca tatarica and Panicum miliaceum. Alliances are differentiated in sample plot species richness and coenoflora: 145 species in alliance Caucalidion coenoflora (mean species number per plot is 16), and 207 species in that of Lactucion tataricae (consequently 13 species). There are 8 associations, 4 subassociations, 6 variants, 1 unrank community within these two alliances, among which 5 associations and all subassociations are new. The alliance Caucalidion includes 4 associations with spatiall and crop differentiation, which are mainly character for the forest-steppe part of the Trans-Urals within the bounds of forest-steppe region of the eastern slope of the Southern Urals. Two associations are new: Cannabio ruderalis–Galeopsietum ladani ass. nov. hoc loco (Table 2; holotypus hoc loco — rele­vé 7) unites weed communities of winter, less often — spring crops; Lycopsio arvensis–Camelinetum microcarpae ass. nov. hoc loco (Table 4; holotypus hoc loco — relevé 3) unites weed communities of row crops, mainly sunflower, less often — cereals. In the same area the communities of the ass. Cannabio ruderalis–Sinapietum arvensis Rudakov in Mirkin et al. 1985 (Table 3) unite the weed communities of mainly winter cereals — wheat and rye. These communities, described in 1980s, previously were widespread in the Trans-Urals (Mirkin et al., 1985), while now occur locally in the northern part of this area. The communities of ass. Centaureo cyani–Stachyetum annuae Abramova in Mirkin et al. 1985, also described in the 1980s, were not found in the 2010s. The diversity of the most xerophytic alliance Lactucion tataricae is represented by 4 associations which occur both in the Trans-Urals and the Cis-Urals. The most common in the last area are weed row crops (beet, nute, flax, sunflower, corn, peas, buckwheat) communities of the ass. Echinochloo crusgalli–Panicetum miliacei ass. nov. hoc loco (Table 5; holotypus hoc loco — relevé 5. They are common in five natural districts: Predbelskiy forest-steppe one, forest and fo­rest-steppe of Belebey Upland, Cis-Urals steppe one, forest and forest-steppe one on Zilair Plateu, and Zabelskiy district of the broad-leaved forests. The weed communities of spring and winter cereals of the ass. Lathyro tuberosi–Convolvuletum arvensis ass. nov. hoc loco (Table 6; holotypus hoc loco — relevé 5) are common only within the Cis-Urals steppe district. The communities of ass. Lactuco serriolae–Tripleurospermetum inodori ass. nov. hoc loco (Table 7; holotypus hoc loco — relevé 2) which unites the weed communities of winter cereals, are common in the steppe zone and the southern part of the forest steppe one of the Trans-Urals and the Cis-Urals within the Cis-Urals steppe, Trans-Urals steppe, and Predbelskiy forest-steppe districts. The communities of the ass. Lactucetum tataricae Rudakov in Mirkin et al. 1985 are associated exclusively with the steppe zone of the Trans-Urals. The Lactuca tatarica community (Table 8), distributed in the steppe and southern part of the forest steppe zones of the Trans-Urals, probably is derived from the ass. Lactucetum tataricae under the intensive chemical weeding of cereal crops. Floristic differentiation of associations is confirmed by the results of the ordination analysis (Fig. 2), the diagram of which shows the distribution of communities along the moisture (first axis) and the complex soil richness–salinity gradient and agrocoenotic factor (second axis).


2009 ◽  
pp. 54-96 ◽  
Author(s):  
S. M. Yamalov ◽  
S. V. Kucherova

The syntaxonomy of the Southern Urals’ forest margins in Bashkortostan Republic is presented. Three new associations and four communities are described. The criteria of identifying the forest margins communities to belong to the class Trifolio-Geranietea and the eastern border of the class distribution are discussed.


2011 ◽  
Vol 91 (4) ◽  
pp. 411-419 ◽  
Author(s):  
A. Yu. Kharitonov ◽  
O. N. Popova

2011 ◽  
pp. 117-126 ◽  
Author(s):  
S. M. Yamalov ◽  
A. V. Bayanov ◽  
V. B. Martynenko ◽  
A. A. Muldashev ◽  
P. S. Shirokikh

Classification of the petrophytic steppe communities occurring on unique geomorphological formations of the Southern Urals (Bashkortostan Republik) — palaeoreefs (”shikhans“) have been performed. The plant communities were classified and included into two new associations (Minuartiо krascheninnikovii―Festucetum pseudovinae и Trinio muricatae―Centauretum sibiricae). Ecological, geographical, floristic and phytocoenotic characteristics of the syntaxa are discussed.


Sign in / Sign up

Export Citation Format

Share Document