Evaluation of Ground Water Quality For AL Shuwayja area –Wasit Provence Using GIS Technique

2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters

2009 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
D. S. Malik ◽  
Pawan Kumar ◽  
Umesh Bharti

The present study aims to identify the ground water contamination problem in villages located in the close vicinity of Gajraula industrial area at Gajraula (U.P.), India. Ground water samples were collected from different villages at the depth of 40 and 120 feet from earth’s surface layer. Analytical techniques as described in the standard methods for examination of water and waste water were adopted for physico-chemical analysis of ground water samples and the results compared with the standards given by WHO and BIS guidelines for drinking water. Water quality index was calculated for quality standard of ground water for drinking purposes. The present investigation revealed that the water quality is moderately degraded due to high range of seven water quality parameters such as Temperature (18.33-32.36 0C), conductivity (925.45-1399.59 μmho/cm), TDS (610.80-923.73 mgL-1), Alkalinity (260.17- 339.83 mgL-1), Ca-Hardness (129.68-181.17 mgL-1), Mg-Hardness (94.07-113.50 mgLÉ1) and COD (13.99-25.62 mgL-1). The water quality index (WQI) also indicated the all the water quality rating comes under the standard marginal values (45-64) i.e. water quality is frequently threatened or impaired and conditions usually depart from natural or desirable levels.


2021 ◽  
Vol 20 (1) ◽  
pp. 77-85
Author(s):  
Ekrem Mutlu ◽  
◽  
Naime Arslan ◽  
Cem Tokatli ◽  
◽  
...  

Aim of the study: In the present study, the spatial – temporal variations of water quality in Boyalı Pond were analyzed. Water Quality Index (WQI) based on the World Health Organization's standards specified for drinking water, and Water Quality Control Regulations in Turkey (WQCR), as well as certain multi-statistical methods, were used in analyzing the water quality. Material and methods: Water samples were collected from 5 stations selected in the lake on monthly basis in 2019 and 30 water quality parameters were measured in total. Water Quality Index (WQI), Factor Analysis (FA), and Cluster Analysis (CA) were used in order to determine the differences between the spatial and temporal quality levels and to classify the investigated locations. Results and conclusions: According to data observed, Boyalı Dam Lake was found to have Class I and Class II water quality in general the WQI results obtained suggested that, although the water quality was found to significantly decrease in summer months, the reservoir was found to have an "A Grade – Excellent" water quality (<50) in all the months and stations analyzed here. WQI values recorded in the dam lake ranged between 16.4 and 27.8 and the detected limnologic parameters did not exceed the standards specified for drinking water in any of the investigated months and stations (<50 for WQI). As a result of FA, 3 factors explained 88.9% of total variances and as a result of CA, 2 statistical clusters were formed.


2010 ◽  
Vol 61 (8) ◽  
pp. 1987-1994 ◽  
Author(s):  
A. M. Jinturkar ◽  
S. S. Deshmukh ◽  
S. V. Agarkar ◽  
G. R. Chavhan

The paper proposes fuzzy logic model that deals with the physico-chemical water analysis of ground water of Chikhli town for determination of Water Quality Index (WQI). The study was carried by collection of ground water samples from about eleven hand pumps located in this town. Ground water quality is studied by systematic collection and analysis of samples. The fuzzy logic is used for the deciding the water quality index on the basis of which, water quality rankings are given to determine the quality of water. The Water Quality Index presented here is a unitless number ranging from 1 to 10. A higher number is indicative of better water quality. Around 81% of samples were found suitable for drinking purpose. It is also observed that all the parameters fall within the permissible limits laid by WHO, ISI, and ICMR, except Total Hardness, Calcium and Magnesium. The quality parameters were compared with standards laid by the World Health Organization (WHO), Indian Standards Institute (ISI) and Indian Council of Medical Research (ICMR) for drinking water quality.


2011 ◽  
Vol 3 (2) ◽  
pp. 315-318
Author(s):  
D. R. Khanna ◽  
Shivom Singh ◽  
Neetu Saxena ◽  
R. Bhutiani ◽  
Gagan Matta ◽  
...  

The drinking water quality (underground water) of Bareilly city has been assessed by estimating physicochemical parameters and calculating Water Quality Index (WQI). Water Quality Index plays an important role in interpreting the information on water quality. The WQI of different sites shows that drinking water is of good quality. The correlation between different parameters was also estimated. During course of study the average value of physico-chemical parameters studied were observed as temperature 20.17 o C, turbidity 2.17 NTU, pH 8.13, electrical conductivity 1360 mmhos/cm, total dissolved solids 1218.9 mg/l, total hardness 515.0 mg/l chlorides 106.34 mg/l, alkalinity 342.15, fluorides 0.44 mg/l, sulphates 84.68 mg/l, nitrates 22.83 mg/l, DO 2.44 mg/l, BOD 1.26 mg/l. While average MPN were observed as 5.66 and average WQI as 21.48.


Sign in / Sign up

Export Citation Format

Share Document