scholarly journals Three closed forms for convolved Fibonacci numbers

2020 ◽  
Author(s):  
Feng Qi

In the paper, by virtue of the Faa di Bruno formula and several properties of the Bell polynomials of the second kind, the author computes higher order derivatives of the generating function of convolved Fibonacci numbers and, consequently, derives three closed forms for convolved Fibonacci numbers in terms of the falling and rising factorials, the Lah numbers, the signed Stirling numbers of the first kind, and the golden ratio.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo

Abstract In this paper, by the Faà di Bruno formula and properties of Bell polynomials of the second kind, the authors reconsider the generating functions of Hermite polynomials and their squares, find an explicit formula for higher-order derivatives of the generating function of Hermite polynomials, and derive explicit formulas and recurrence relations for Hermite polynomials and their squares.


2018 ◽  
Vol 72 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

Abstract In the paper, the authors apply Faà di Bruno formula, some properties of the Bell polynomials of the second kind, the inversion formulas of binomial numbers and the Stirling numbers of the first and the second kind, to significantly simplify coefficients in two families of ordinary differential equations associated with the higher order Frobenius–Euler numbers.


Author(s):  
Feng Qi

In the paper, the author (1) presents an explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials, with the help of the Faà di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem for the Stirling numbers of the first and second kinds; (2) recovers an explicit formula and its inversion formula for the Bell polynomials in terms of the Stirling numbers of the first and second kinds, with the aid of the above explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials; (3) constructs some determinantal and product inequalities and deduces the logarithmic convexity of the Bell polynomials, with the assistance of the complete monotonicity of generating functions of the Bell polynomials. These inequalities are main results of the paper.


Author(s):  
Feng Qi

In the paper, the author (1) presents an explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials, with the help of the Faà di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem for the Stirling numbers of the first and second kinds; (2) recovers an explicit formula and its inversion formula for the Bell polynomials in terms of the Stirling numbers of the first and second kinds, with the aid of the above explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials; (3) derives the (logarithmically) absolute and complete monotonicity of generating functions of the Bell polynomials; (4) constructs some determinantal and product inequalities and deduces the logarithmic convexity of the Bell polynomials, with the assistance of the complete monotonicity of generating functions of the Bell polynomials. These inequalities are main results of the paper.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Yan Wang ◽  
Muhammet Cihat Dağli ◽  
Xi-Min Liu ◽  
Feng Qi

In the paper, by virtue of the Faà di Bruno formula, with the aid of some properties of the Bell polynomials of the second kind, and by means of a general formula for derivatives of the ratio between two differentiable functions, the authors establish explicit, determinantal, and recurrent formulas for generalized Eulerian polynomials.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.


2007 ◽  
Vol 48 (3) ◽  
pp. 327-341 ◽  
Author(s):  
Roy B. Leipnik ◽  
Charles E. M. Pearce

AbstractThe Faà di Bruno formulæ for higher-order derivatives of a composite function are important in analysis for a variety of applications. There is a substantial literature on the univariate case, but despite significant applications the multivariate case has until recently received limited study. We present a succinct result which is a natural generalization of the univariate version. The derivation makes use of an explicit integralform of the remainder term for multivariate Taylor expansions.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second kind.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Fa`a di Bruno formula, some properties of the Bell polynomials of the second kind, and the inversion formulas of binomial numbers and the Stirling numbers of the first and second kinds, the authors simplify meaningfully and significantly coefficients in two families of ordinary differential equations associated with higher order Frobenius–Euler numbers.


Author(s):  
Feng Qi ◽  
Dongkyu Lim ◽  
Bai-Ni Guo

In the paper, the authors establish two identities, which can be regarded as nonlinear differential equations, for the generating function of Eulerian polynomials, find two identities for the Stirling numbers of the second kind, and present two identities for Eulerian polynomials and higher order Eulerian polynomials, pose two open problems about summability of two finite sums involving the Stirling numbers of the second kind. Some of these conclusions meaningfully and significantly simplify several known results.


Sign in / Sign up

Export Citation Format

Share Document