scholarly journals Multiple full-body tracking for interaction and navigation in social VR

2020 ◽  
Author(s):  
Richard Schurz ◽  
Earl Bull

MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.

Author(s):  
Alessandra Gorini ◽  
Andrea Gaggioli ◽  
Giuseppe Riva

The present chapter illustrates the past and the future of different virtual reality applications for the treatment of psychological disorders. After a brief technical description of the virtual reality systems, the rationale of using virtual reality to treat different psychological disorders, as well as the advantages that the online virtual worlds offer to the promising field of the virtual therapy will be discussed. However, challenges related to the potential risks of the use of virtual worlds and questions regarding privacy and personal safety will also be discussed. Finally, the chapter introduces the concept of “Interreality”, a personalized immersive form of e-therapy whose main novelty is a hybrid, closed-loop empowering experience bridging physical and virtual worlds. The main feature of interreality is a twofold link between the virtual and the real world: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through: (1) 3D shared virtual worlds; (2) bio and activity sensors (that connect the real to the virtual world); (3) mobile internet appliances (that connect the virtual to the real world).


2001 ◽  
Vol 65 (1) ◽  
pp. 78-91 ◽  
Author(s):  
Page L. Anderson ◽  
Barbara O. Rothbaum ◽  
Larry Hodges

Proceedings ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 35
Author(s):  
Wei Wang

The development of virtual reality brings an old and historic question on the difference between the real world and unreal world. In this paper, starting from the concept of representation, I argued that what we call “virtual reality” is a representation of an actual or non-actual world and the criterion of difference between the “real world” and “virtual reality” is whether we present it with the intention of using it as a representation. After that, the thesis is demonstrated again from different theories of scientific representation. Therefore, the intuitive distinction between the “real world” and “virtual reality” can be drawn on the epistemological criterion; that is to say, the virtual world is a representation while the real world is not.


Author(s):  
John Nordlinger

Many of the opportunities in the virtual world are not available in the physical world, others open our eyes to real world opportunities we couldn’t imagine and teach us vocabulary and skills applicable to the real world. This chapter explores some of the connections between virtual decisions and real consequences, as envisioned in thought experiments of early philosophers from both eastern and western traditions.


2021 ◽  
Vol 4 (2) ◽  
pp. 102-111
Author(s):  
Olivia Jean-Baptiste

Augmented reality (AR) refers to a type of technology in which a digital overlay can be added to the real world in order to present the viewer with aspects of both reality and a virtual world. Virtual reality (VR) environments consist of a computer-generated, three-dimensional, virtual world. However, in contrast to augmented reality technology these environments are self-contained, and do not allow users to interact directly with the real world around them. 1 This article will explore the current status of protection for AR and VR art in relation to moral rights drawing from three jurisdictions: France, the United Kingdom and the United States.


Author(s):  
Robin Horst ◽  
Ramtin Naraghi-Taghi-Off ◽  
Linda Rau ◽  
Ralf Dörner

AbstractEvery Virtual Reality (VR) experience has to end at some point. While there already exist concepts to design transitions for users to enter a virtual world, their return from the physical world should be considered, as well, as it is a part of the overall VR experience. We call the latter outro-transitions. In contrast to offboarding of VR experiences, that takes place after taking off VR hardware (e.g., HMDs), outro-transitions are still part of the immersive experience. Such transitions occur more frequently when VR is experienced periodically and for only short times. One example where transition techniques are necessary is in an auditorium where the audience has individual VR headsets available, for example, in a presentation using PowerPoint slides together with brief VR experiences sprinkled between the slides. The audience must put on and take off HMDs frequently every time they switch from common presentation media to VR and back. In a such a one-to-many VR scenario, it is challenging for presenters to explore the process of multiple people coming back from the virtual to the physical world at once. Direct communication may be constrained while VR users are wearing an HMD. Presenters need a tool to indicate them to stop the VR session and switch back to the slide presentation. Virtual visual cues can help presenters or other external entities (e.g., automated/scripted events) to request VR users to end a VR session. Such transitions become part of the overall experience of the audience and thus must be considered. This paper explores visual cues as outro-transitions from a virtual world back to the physical world and their utility to enable presenters to request VR users to end a VR session. We propose and investigate eight transition techniques. We focus on their usage in short consecutive VR experiences and include both established and novel techniques. The transition techniques are evaluated within a user study to draw conclusions on the effects of outro-transitions on the overall experience and presence of participants. We also take into account how long an outro-transition may take and how comfortable our participants perceived the proposed techniques. The study points out that they preferred non-interactive outro-transitions over interactive ones, except for a transition that allowed VR users to communicate with presenters. Furthermore, we explore the presenter-VR user relation within a presentation scenario that uses short VR experiences. The study indicates involving presenters that can stop a VR session was not only negligible but preferred by our participants.


Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


2006 ◽  
Vol 5 (3) ◽  
pp. 53-58 ◽  
Author(s):  
Roger K. C. Tan ◽  
Adrian David Cheok ◽  
James K. S. Teh

For better or worse, technological advancement has changed the world to the extent that at a professional level demands from the working executive required more hours either in the office or on business trips, on a social level the population (especially the younger generation) are glued to the computer either playing video games or surfing the internet. Traditional leisure activities, especially interaction with pets have been neglected or forgotten. This paper introduces Metazoa Ludens, a new computer mediated gaming system which allows pets to play new mixed reality computer games with humans via custom built technologies and applications. During the game-play the real pet chases after a physical movable bait in the real world within a predefined area; infra-red camera tracks the pets' movements and translates them into the virtual world of the system, corresponding them to the movement of a virtual pet avatar running after a virtual human avatar. The human player plays the game by controlling the human avatar's movements in the virtual world, this in turn relates to the movements of the physical movable bait in the real world which moves as the human avatar does. This unique way of playing computer game would give rise to a whole new way of mixed reality interaction between the pet owner and her pet thereby bringing technology and its influence on leisure and social activities to the next level


2020 ◽  
Author(s):  
Paola Araiza-Alba ◽  
Therese Keane ◽  
Jennifer L Beaudry ◽  
Jordy Kaufman

In recent years, immersive virtual reality technology (IVR) has seen a substantial improvement in its quality, affordability, and ability to simulate the real world. Virtual reality in psychology can be used for three basic purposes: immersion, simulation, and a combination of both. While the psychological implementations of IVR have been predominately used with adults, this review seeks to update our knowledge about the uses and effectiveness of IVR with children. Specifically, its use as a tool for pain distraction, neuropsychological assessment, and skills training. Results showed that IVR is a useful tool when it is used either for immersive or simulative purposes (e.g., pain distraction, neuropsychological assessment), but when its use requires both simulation (of the real world) and immersion (e.g., a vivid environment), it is trickier to implement effectively.


2021 ◽  
Author(s):  
Taicheng Huang ◽  
Yiying Song ◽  
Jia Liu

Our mind can represent various objects from the physical world metaphorically into an abstract and complex high-dimensional object space, with a finite number of orthogonal axes encoding critical object features. Previous fMRI studies have shown that the middle fusiform sulcus in the ventral temporal cortex separates the real-world small-size map from the large-size map. Here we asked whether the feature of objects' real-world size constructed an axis of object space with deep convolutional neural networks (DCNNs) based on three criteria of sensitivity, independence and necessity that are impractical to be examined altogether with traditional approaches. A principal component analysis on features extracted by the DCNNs showed that objects' real-world size was encoded by an independent component, and the removal of this component significantly impaired DCNN's performance in recognizing objects. By manipulating stimuli, we found that the shape and texture of objects, rather than retina size, co-occurrence and task demands, accounted for the representation of the real-world size in the DCNNs. A follow-up fMRI experiment on humans further demonstrated that the shape, but not the texture, was used to infer the real-world size of objects in humans. In short, with both computational modeling and empirical human experiments, our study provided the first evidence supporting the feature of objects' real-world size as an axis of object space, and devised a novel paradigm for future exploring the structure of object space.


Sign in / Sign up

Export Citation Format

Share Document