scholarly journals 1 Molecular Docking and Enzymatic Evaluation to Identify Selective Inhibitors of Aspartate Semialdehyde Dehydrogenase

2018 ◽  
Author(s):  
Amarjit Luniwal

Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.

2021 ◽  
Vol 22 (7) ◽  
pp. 3595
Author(s):  
Md Afjalus Afjalus Siraj ◽  
Md. Sajjadur Rahman ◽  
Ghee T. Tan ◽  
Veronique Seidel

A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.


Author(s):  
Nidhi Rani ◽  
Randhir Singh ◽  
Praveen Kumar

Background: Candida albicans is one of the most important causes of fatal fungal infections. Ergosterol, the main sterol in the fungal cell membrane, is the resultant product of Lanosterol in the presence of the enzyme Lanosterolα-demethylase (Cytochrome P450DM). This enzyme is the target enzyme of azole antifungal agents. Aim: To evaluate the antifungal potency of some of the natural compounds via molecular modeling and Absorption, Distribution, Metabolism and Excretion (ADME) study. Method: The study involved the selection and modeling of the target enzyme, followed by the refinement of the model using molecular dynamic simulation. The modelled structure of the enzyme was validated using the Ramachandran plot and Sequence determination technique. A series of natural compounds was evaluated for cytochrome P450 inhibitory activity using molecular docking studies. The structures of compounds were prepared using a Chem sketch, and molecular docking was performed using Molergo Virtual Docker (MVD) program. Results: The docking study indicated that all the natural compounds have interactivity with protein residue of 14α-demethylase, and the heme prosthetic group and water molecules are present at the active site. The data were also correlated with the synthetic compounds that were experimentally inactive against the fungus and had a low docking score. The compounds with a high dock score were further screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile, and it was predicted that these compounds can be used as lead with a good ADME profile and low toxicity. Conclusion: The natural compound, i.e., curcumin, can easily be used further for lead optimization.


2018 ◽  
Vol 10 (2) ◽  
pp. 135-155 ◽  
Author(s):  
Gloria Antobreh ◽  
Istvan Enyedy ◽  
Aina Westrheim Ravna

2013 ◽  
Vol 172 (3) ◽  
pp. 1407-1432 ◽  
Author(s):  
Madhusudana Pulaganti ◽  
Babajan Banaganapalli ◽  
Chaitanya Mulakayala ◽  
Suresh Kumar Chitta ◽  
Anuradha C. M.

2021 ◽  
Vol 11 (4) ◽  
pp. 7336-7342
Author(s):  
K. Zaher ◽  
N. E. Masango ◽  
W. Sobhi ◽  
K. E. Kanouni ◽  
A. Semmeq ◽  
...  

In the present study, we will verify the action of hydroxychloroquine-based derivatives on ACE2 which is considered to be the main portal of entry of the SARS-CoV-2 virus and constitutes an exciting target given its relative genetic stability compared to viral proteins. Thus, 81 molecules derived from hydroxychloroquine by substitutions at 4 different positions were generated in-silico and then studied for their affinity for ACE2 by molecular docking. Only 4 molecules were retained because of their affinity and bioavailability demonstrated by molecular dynamics and molecular docking calculations using COSMOtherm and Materials Studio software.


2021 ◽  
Vol 14 (1) ◽  
pp. 21-30
Author(s):  
M.T. Ibrahim ◽  
U. Muhammad

β-glucuronidase enzyme is present mostly in mammals’ tissues. β-glucuronidase is present in kidney, bile, serum, urine and spleen. In eukaryotic and prokaryotic organisms, it is important in the process of breaking down of β-glucuronide. It also helps in the neutralization of reactivity of some metabolites that are associated to many diseases. The most stable geometry of the dataset were obtained adopting DFT method at B3LYP/6-31G* level of theory. The model was developed using MLR analysis adopting GFA method. Molecular docking was also performed to portray the binding mode of these bis-indolymethanes derivatives in the binding pocket of their target receptor (human β-glucuronidase). The selected model was assessed and chosen based on its statistical fitness with R2trng=0.907233, R2adj=0.881465,  Qcv2=0.833795, and R2test=0.609841. And also, the significance and impart of each physicochemical parameters to the selected model were determine by their ME values. Molecular docking analysis revealed that amino acid such as ALA49, SER52, ASP53, PHE51, VAL96, LEU92, TYR188, TYR199 and PHE200 might be responsible for the most promised binding affinity of the reported docked ligands. The molecular docking results showed that the reported compounds were better than the standard β-glucuronidase inhibitor. The results of this findings paved way for designing novel β-lucuronidase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document