Pemodelan Reaktor Hibrid Anaerob Pengolah Molasse Pada Pembebanan Organik Tinggi

2020 ◽  
Author(s):  
Gede H Cahyana

Telah dikembangkan reaktor anaerob kecepatan tinggi (high rate) yang merupakan modifikasi reaktor konvensional. Di antaranya berupa (bio)reaktor pertumbuhan tersuspensi (contoh: UASB, Upflow Anaerobic Sludge Blanket) dan reaktor pertumbuhan lekat (Fixed Bed atau Biofilter, Fluidized Bed, Expanded Bed, Rotating Biodisc dan Baffled Reactor). Kedua tipe reaktor di atas memiliki sejumlah kelebihan dan kekurangan. Untuk mengoptimalkan nilai positifnya (terutama untuk keperluan desain) maka reaktor tersebut, pada penelitian ini, disusun menjadi satu urutan yang disebut Reaktor Hibrid Anaerob (Rehan) yakni UASB di bawah dan AF di atasnya. Lebih lanjut, penelitian ini diharapkan dapat memberikan informasi tentang kinerja Rehan dalam mengolah air limbah (substrat) yang konsentrasi zat organiknya (COD) sangat tinggi dan suatu model matematika yang dapat mewakili reaktor tersebut.

1990 ◽  
Vol 22 (1-2) ◽  
pp. 475-482 ◽  
Author(s):  
C. Collivignarelli ◽  
G. Urbini ◽  
A. Farneti ◽  
A. Bassetti ◽  
U. Barbaresi

The results of pilot experiments on municipal wastewater treatment using advanced processes are described. The most important aims of this research were to achieve reductions in energy consumption, environmental impact, quantity of stabilized sludge produced, and area necessary for plant construction. The pilot plant, which was constructed in the environs of the Senigallia (AN, Italy) municipal wastewater treatment plant, had a capacity of 500 to 2500 population equivalents (p.e.). In the most attractive system, municipal wastewaters with a low organic concentration were first treated in an upflow anaerobic sludge blanket (UASB) bioreactor with a capacity of 336 m3. Part of the effluent from this process was then conveyed to an anoxic biological fluidized bed (with a volume of 8 m3 filled with 3 m3 of quartzite sand) for pre-denitrification, and then to an aerobic fixed bed (with random plastic media and a volume of 8m3) for nitrification. It was also possible to treat the municipal wastewaters using the anaerobic fluidized bed directly, after microscreening or primary sedimentation. The research undertaken was intended to verify the reliability of these processes at ambient temperatures and with variable wastewater concentrations. The preliminary results obtained for COD, BOD, and N removal from municipal wastewaters indicate that this system is quite an attractive treatment alternative, mainly due to its low sludge production and energy consumption. These results will enable accurate design criteria to be identified for the construction of more economic treatment plants on a larger scale.


2016 ◽  
Vol 14 (1) ◽  
pp. 7 ◽  
Author(s):  
Iin Parlina ◽  
Lestari Widodo

Along with the development of biogas and its utilization, biogas reactors also evolved from conventional reactor types to high rate performance reactors, adapts to the needs of increased efficiency and also the characteristics of organic waste that is difficult if processed using ordinary reactor. However, this type of reactor basically has 3 types, namely fixed bed (packed-bed, anaerobic filters, fixed-film), fluidized bed reactor, and UASB/ Upflow Anaerobic Sludge Blanket reactor. From these high rate performance reactors, fixed bed reactor is the type that is pretty much developed and implemented in Indonesia, especially for treating organic wastewater from small industries, for example tofu, tapioca and slaughterhouses. Implementation of fixed bed reactor for the tofu industry until today has reached as much as 5 units that serve the needs of about 132 households in Banyumas District, Central Java Province. The fixed bed reactor’s performance is quite high if it is evaluated from biogas yield and the efficiency of the organic content in tofu industry’s wastewater. Implementation, dissemination, and replication of this reactor for treatment of other types of organic waste or other areas have the potential to support government programs in GHG mitigation actions, renewable energy sources provision, environmental protection and the development of energy self-sufficient villages.Keywords : biogas reactor - performance high - rate, fixed bed reactors, tofu industryAbstrakSeiring dengan perkembangan biogas beserta pemanfaatannya, reaktor biogas juga berkembang dari jenis reaktor konvensional hingga reaktor berunjuk kerja tinggi (high rate performance) menyesuaikan dengan kebutuhan peningkatan efisiensi dan juga karakteristik limbah organik yang sulit jika diolah dengan menggunakan reaktor biogas biasa. Namun, pada dasarnya reaktor ini memiliki 3 jenis, yaitu reaktor unggun tetap (fixed bed, packed-bed, anaerobic filter, fixed-film), reaktor unggun terfluidisasi (fluidized bed reactor), dan reaktor UASB (Upflow Anaerobic Sludge Blanket). Dari ketiga jenis reaktor berunjuk kerja tinggi tersebut, reaktor jenis unggun tetap adalah jenis yang cukup banyak dikembangkan dan diimplementasikan di Indonesia, terutama untuk mengolah limbah cair organik yang berasal dari industri kecil, misalnya tahu, tapioka dan rumah potong hewan. Implementasi reaktor unggun tetap untuk industri tahu hingga saat ini telah mencapai jumlah 5 unit reaktor yang melayani kebutuhan sekitar 132 Rumah tangga di Kabupaten Banyumas secara berkelanjutan. Kinerja reaktor unggun tetap ini dapat dikatakan cukup tinggi jika dinilai dari perolehan biogas dan efisiensi penurunan kandungan organic dalam limbah cair tahu. Program implementasi, diseminasi, dan replikasi reaktor ini untuk pengolahan jenis limbah organik yang lain atau daerah lain memiliki potensi dalam mendukung program pemerintah dalam aksi mitigasi Gas Rumah Kaca, penyediaan sumber energi terbarukan, perlindungan lingkungan dan pengembangan desa mandiri energi.Kata kunci : biogas, reaktor high-rate-performance, reaktor fixed bed, industri tahu


1989 ◽  
Vol 21 (4-5) ◽  
pp. 109-120 ◽  
Author(s):  
M. Yoda ◽  
M. Kitagawa ◽  
Y. Miyaji

The anaerobic expanded micro-carrier bed (MCB) process, which utilizes fine (50-100 microns) support materials as expanded bed media, was found to have the ability to cultivate granular sludge similar to that formed in the upflow anaerobic sludge blanket (UASB) process. Two laboratory-scale MCB reactors were studied with VFA and glucose wastewaters to clarify the role of the micro-carrier and the influence of substrates on granular sludge formation. Based on these results, a scale-up model with a reactor volume of 800 1 was successfully operated using molasses wastewater to demonstrate the feasibility of granular sludge formation in the MCB process.


1986 ◽  
Vol 18 (12) ◽  
pp. 99-108 ◽  
Author(s):  
Gatze Lettinga ◽  
Look Hulshoff Pol

Of the high rate anaerobic wastewater treatment systems the UASB (Upflow Anaerobic Sludge Blanket) reactor has found the widest application. Therefore the attention with respect to design, operation and economy will be focussed on this reactor type. In designing a UASB reactor specific attention is needed for the GSS (Gas-Solids Separator) device and the feed inlet system. For soluble wastewater generally no phase separation is required. Only for wastewaters high in suspended solids pre-acidification in a separate acidification reactor can be beneficial. Increasing attention is given to the development of modified UASB systems, such as a combination of a sludge bed reactor and an anaerobic filter. Other possible modified UASB systems may be found in a FS (Floating Settling) UASB reactor, the EGSB (Expanded Granular Sludge Bed) reactor and the UASB IC (Internal Circulation) reactor. As many factors are involved in the costs of a UASB reactor, only some rough data on reactor costs are presented.


1983 ◽  
Vol 15 (8-9) ◽  
pp. 177-195 ◽  
Author(s):  
G Lettinga ◽  
S W Hobma ◽  
L W Hulshoff Pol ◽  
W de Zeeuw ◽  
P de Jong ◽  
...  

This paper aims to contribute to the assesment of a (more) optimal design and operation of a high rate anaerobic waste water treatment process. The discussion will be made on basis of available information of modern anaerobic waste water treatment processes, such as the Anaerobic Filter Process and the Upflow Anaerobic Sludge Blanket process and of recently introduced Attached Film processes.


1992 ◽  
Vol 25 (7) ◽  
pp. 373-382 ◽  
Author(s):  
R. J. Frankin ◽  
W. A. A. Koevoets ◽  
W. M. A. van Gils ◽  
A. van der Pas

Over the past ten years Gist-brocades has been engaged in anaerobic waste water treatment. An in-depth research program concluded in the construction and operation of three full-scale plants for the treatment of yeast processing and pharmaceutical waste waters. Using the operational experience of the fluidized bed biomass-on-carrier systems and incorporating the strong assets of the Upflow Anaerobic Sludge Blanket (UASB) system features a new process was developed, the so-called Upflow Fluidized Bed (UFB) BIOBED® process, which operation appeared to be very successful over a > 3 year period at full scale. The UFB BIOBED® system combines both characteristics of the UASB and FB processes. Biomass is present in a granular form but conditions with respect to upflow velocities for water and gas approach those of the original Fluidized Bed - biomass on carrier - (FB) system.


2008 ◽  
Vol 58 (1) ◽  
pp. 225-232 ◽  
Author(s):  
A. S. Shanmugam ◽  
J. C. Akunna

Anaerobic technologies have proved successful in the treatment of various high strength wastewaters with perceptible advantages over aerobic systems. The applicability of anaerobic processes to treat low strength wastewaters has been increasing with the evolution of high-rate reactors capable of achieving high sludge retention time (SRT) when operating at low HRT. However, the performance of these systems can be affected by high variations in flow and wastewater composition. This paper reports on the comparative study carried out with two such high rate reactors systems to evaluate their performances when used for the treatment of low strength wastewaters at high hydraulic rates. One of the two systems is the most commonly used upflow anaerobic sludge blanket (UASB) reactor in which all reactions occur within a single vessel. The other is the granular bed baffled reactor (GRABBR) that encourages different stages of anaerobic digestion in separate vessels longitudinally across the reactor. The reactors, with equal capacity of 10 litres, were subjected to increasing organic loading rates (OLRs) and hydraulic retention times (HRTs) of up to 60 kg COD m−3 d−1 and 1 h respectively. Results show that the GRABBR has greater processes stability at relatively low HRTs, whilst the UASB seems to be better equipped to cope with organic overloads or shockloads. The study also shows that the GRABBR enables the harvesting of biogas with greater energetic value and hence greater re-use potential than the UASB. Biogas of up to 86% methane content is obtainable with GRABBR treating low strength wastewaters.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59823-59833 ◽  
Author(s):  
Periyasamy Sivagurunathan ◽  
Parthiban Anburajan ◽  
Gopalakrishnan Kumar ◽  
Takuro Kobayashi ◽  
Kai Qin Xu ◽  
...  

High-rate hydrogen production from galactose and rapid granule formation were achieved in a mesophilic (37 °C) upflow anaerobic sludge blank reactor (UASBr).


Sign in / Sign up

Export Citation Format

Share Document