Equation of quantum cosmology on the basis of the equation the Schwinger - Tomonaga

2019 ◽  
Author(s):  
Vitaly Kuyukov

The modern formulation of cosmology has different approaches, one of which is quantum cosmology. For example, the equation Wheeler - DeWitt without a direct evolution. In this article we will use the recent approach to quantum cosmology based on the principle of uncertainty between the Hubble parameter and the volume of the space. In this article, we use the complete formulation of the equations for the wave function of the universe. For this purpose, the Schwinger equation for the evolution of the wave function along the Hyper-surface of space-time.

2019 ◽  
Author(s):  
Vitaly Kuyukov

In this article we will use the recent approach to quantum cosmology based on the principle of uncertainty between the Hubble parameter and the volume of the space. In this article, we use the complete formulation of the equations for the wave function of the universe. For this purpose, the Schwinger equation for the evolution of the wave function along the hyper-surface of space-time.


1997 ◽  
Vol 12 (16) ◽  
pp. 1127-1130 ◽  
Author(s):  
M. D. Pollock

By demanding the existence of a globally invariant ground-state solution of the Wheeler–De Witt equation (Schrödinger equation) for the wave function of the Universe Ψ, obtained from the heterotic superstring theory, in the four-dimensional Friedmann space-time, we prove that the cosmological vacuum energy has to be zero.


1988 ◽  
Vol 03 (07) ◽  
pp. 645-651 ◽  
Author(s):  
SUMIO WADA

A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
M. F. Gusson ◽  
A. Oakes O. Gonçalves ◽  
R. G. Furtado ◽  
J. C. Fabris ◽  
J. A. Nogueira

AbstractIn this work, we consider effects of the dynamical vacuum in quantum cosmology in presence of a minimum length introduced by the GUP (generalized uncertainty principle) related to the modified commutation relation $$[{\hat{X}},{\hat{P}}] := \frac{i\hbar }{ 1 - \beta {\hat{P}}^2 }$$ [ X ^ , P ^ ] : = i ħ 1 - β P ^ 2 . We determine the wave function of the Universe $$ \psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) , which is solution of the modified Wheeler–DeWitt equation in the representation of the quasi-position space, in the limit where the scale factor of the Universe is small. Although $$\psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) is a physically acceptable state it is not a realizable state of the Universe because $$ \psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) has infinite norm, as in the ordinary case with no minimal length.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 116 ◽  
Author(s):  
Philipp Höhn

Despite its importance in general relativity, a quantum notion of general covariance has not yet been established in quantum gravity and cosmology, where, given the a priori absence of coordinates, it is necessary to replace classical frames with dynamical quantum reference systems. As such, quantum general covariance bears on the ability to consistently switch between the descriptions of the same physics relative to arbitrary choices of quantum reference system. Recently, a systematic approach for such switches has been developed. It links the descriptions relative to different choices of quantum reference system, identified as the correspondingly reduced quantum theories, via the reference-system-neutral Dirac quantization, in analogy to coordinate changes on a manifold. In this work, we apply this method to a simple cosmological model to demonstrate how to consistently switch between different internal time choices in quantum cosmology. We substantiate the argument that the conjunction of Dirac and reduced quantized versions of the theory defines a complete relational quantum theory that not only admits a quantum general covariance, but, we argue, also suggests a new perspective on the ‘wave function of the universe’. It assumes the role of a perspective-neutral global state, without immediate physical interpretation that, however, encodes all the descriptions of the universe relative to all possible choices of reference system at once and constitutes the crucial link between these internal perspectives. While, for simplicity, we use the Wheeler-DeWitt formulation, the method and arguments might be also adaptable to loop quantum cosmology.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
V. Vázquez-Báez ◽  
C. Ramírez

We study the quantum cosmology of a quadratic fR theory with a FRW metric, via one of its equivalent Horndeski type actions, where the dynamic of the scalar field is induced. The classical equations of motion and the Wheeler-DeWitt equation, in their exact versions, are solved numerically. There is a free parameter in the action from which two cases follow: inflation + exit and inflation alone. The numerical solution of the Wheeler-DeWitt equation depends strongly on the boundary conditions, which can be chosen so that the resulting wave function of the universe is normalizable and consistent with Hermitian operators.


1998 ◽  
Vol 07 (05) ◽  
pp. 701-712 ◽  
Author(s):  
ALFREDO MACÍAS ◽  
ECKEHARD W. MIELKE ◽  
JOSÉ SOCORRO

The canonical theory of [Formula: see text] supergravity, with a matrix representation for the gravitino covector–spinor, is applied to the Bianchi class A spatially homogeneous cosmologies. The full Lorentz constraint and its implications for the wave function of the universe are analyzed in detail. We found that in this model no physical states other than the trivial "rest frame" type occur.


2001 ◽  
Vol 10 (06) ◽  
pp. 943-956
Author(s):  
SUBENOY CHAKRABORTY

This paper deals with quantum cosmological phenomena in anisotropic cosmological models with nonminimally coupled scalor field. With proper transformation of the field variables, the Wheeler–Dewitt (WD) equation looks simple in form and solutions are obtained using separable form of the wave function. Using part integral formulation, the wave function of the Universe has been evaluated by the method of steepest descent. Finally, the causal interpretation has been done using quantum Bohmian trajectories and also we study the classical limit of some particular solutions of these quantum models.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941009 ◽  
Author(s):  
Tatyana P. Shestakova

The meaning of the wave function of the Universe was actively discussed in 1980s. In most works on quantum cosmology, it is accepted that the wave function is a probability amplitude for the Universe to have some space geometry, or to be found in some point of the Wheeler superspace. It seems that the wave function gives maximally objective description compatible with quantum theory. However, the probability distribution does not depend on time and does not take into account the existing of our macroscopic evolving Universe. What we wish to know is how quantum processes in the Early Universe determined the state of the present Universe in which we are able to observe macroscopic consequences of these quantum processes. As an alternative to the Wheeler–DeWitt quantum geometrodynamics, we consider the picture that can be obtained in the extended phase space approach to quantization of gravity. The wave function in this approach describes different states of the Universe which correspond to different stages of its evolution.


1994 ◽  
Vol 03 (03) ◽  
pp. 609-621 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
RUGGIERO DE RITIS ◽  
PAOLO SCUDELLARO

We construct minisuperspace models for a class of theories of gravity nonminimally coupled with a scalar field. We show that when a Nöther symmetry exists, it is always possible to integrate the Wheeler-DeWitt equation and recover the semiclassical regime for the wave function of the universe. In this sense, we can interpret the Nöther symmetries as a selection rule in the philosophy of the so called Hartle criterion: when they exist, it is possible to select classical universes.


Sign in / Sign up

Export Citation Format

Share Document