scholarly journals Quantum Cosmology of Quadratic f(R) Theories with a FRW Metric

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
V. Vázquez-Báez ◽  
C. Ramírez

We study the quantum cosmology of a quadratic fR theory with a FRW metric, via one of its equivalent Horndeski type actions, where the dynamic of the scalar field is induced. The classical equations of motion and the Wheeler-DeWitt equation, in their exact versions, are solved numerically. There is a free parameter in the action from which two cases follow: inflation + exit and inflation alone. The numerical solution of the Wheeler-DeWitt equation depends strongly on the boundary conditions, which can be chosen so that the resulting wave function of the universe is normalizable and consistent with Hermitian operators.

1994 ◽  
Vol 03 (03) ◽  
pp. 609-621 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
RUGGIERO DE RITIS ◽  
PAOLO SCUDELLARO

We construct minisuperspace models for a class of theories of gravity nonminimally coupled with a scalar field. We show that when a Nöther symmetry exists, it is always possible to integrate the Wheeler-DeWitt equation and recover the semiclassical regime for the wave function of the universe. In this sense, we can interpret the Nöther symmetries as a selection rule in the philosophy of the so called Hartle criterion: when they exist, it is possible to select classical universes.


1999 ◽  
Vol 08 (05) ◽  
pp. 625-634 ◽  
Author(s):  
H. Q. LU ◽  
T. HARKO ◽  
K. S. CHENG

A quantum model of gravitation interacting with a Born–Infeld type nonlinear scalar field φ is considered. The corresponding Wheeler–DeWitt equation can be solved analytically for both large and small [Formula: see text]. In the extreme limits of small and large cosmological scale factors the wave function of the Universe can also be obtained by applying the methods developed by Vilenkin and Hartle and Hawking. An inflationary Universe is predicted with the largest possible vacuum energy and the largest interaction between the particles of the nonlinear scalar field.


1997 ◽  
Vol 12 (05) ◽  
pp. 859-871
Author(s):  
Y. Ohkuwa ◽  
T. Kitazoe

We consider a quantum cosmology with a massless background scalar field ϕB and adopt a wave packet as the wave function. This wave packet is a superposition of the WKB form wave functions, each of which has a definite momentum of the scalar field ϕB. In this model it is shown that to trace the formalism of the WKB time is seriously difficult without introducing a complex value for a time. We define a semiclassical real time variable TP from the phase of the wave packet and calculate it explicitly. We find that, when a quantum matter field ϕQ is coupled to the system, an approximate Schrödinger equation for ϕQ holds with respect to TP in a region where the size a of the universe is large and |ϕB| is small.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050039
Author(s):  
Luis Rey Díaz-Barrón ◽  
Abraham Espinoza-García ◽  
S. Pérez-Payán ◽  
J. Socorro

In this work, we construct a noncommutative version of the Friedmann equations in the framework of effective loop quantum cosmology, extending and applying the ideas presented in a previous proposal by some of the authors. The model under consideration is a flat FRW spacetime with a free scalar field. First, noncommutativity in the momentum sector is introduced. We establish the noncommutative equations of motion and obtain the corresponding exact solutions. Such solutions indicate that the bounce is preserved, in particular, the energy density is the same as in the standard LQC. We also construct an extension of the modified Friedmann equations arising in effective LQC which incorporates corrections due to noncommutativity, and argue that an effective potential is induced. This, in turn, leads us to investigate the possibility of an inflationary era. Finally, we obtain the Friedmann and the Raychaudhuri equations when implementing noncommutativity in the configuration sector. In this case, no effective potential is induced.


1972 ◽  
Vol 50 (7) ◽  
pp. 636-645 ◽  
Author(s):  
D. Leiter ◽  
J. Huschilt ◽  
G. Szamosi

The N-body problem is analyzed within the framework of a new formalism for relativistic point masses interacting via a scalar field, in which the problems of infinite self-energies are absent. A Lagrangian formalism is exhibited which yields the particle equations of motion in the form of a parameterized class of equations. The parameter determines the choice of boundary conditions which is chosen on the scalar-field equations. The existence or nonexistence of the relativistic nuclear hard-core effect, associated with the scalar-field interactions, is shown to depend critically on the particular set of boundary conditions which are imposed on the scalar-field equations. In particular, time-symmetric boundary conditions yield no hard-core repulsion, while retarded boundary conditions are shown to yield a hard-core repulsion at very short range.


1997 ◽  
Vol 06 (06) ◽  
pp. 649-671 ◽  
Author(s):  
A. Yu. Kamenshchik ◽  
I. M. Khalatnikov ◽  
A. V. Toporensky

We investigate the cosmological model with the complex scalar self-interacting inflaton field non-minimally coupled to gravity. The different geometries of the Euclidean classically forbidden regions are represented. The instanton solutions of the corresponding Euclidean equations of motion are found by numerical calculations supplemented by the qualitative analysis of Lorentzian and Euclidean trajectories. The applications of these solutions to the no-boundary and tunneling proposals for the wave function of the Universe are studied. Possible interpretation of obtained results and their connection with inflationary cosmology is discussed. The restrictions on the possible values of the new quasifundamental constant of the theory — non-zero classical charge — are obtained. The equations of motion for the generalized cosmological model with complex scalar field are written down and investigated. The conditions of the existence of instanton solutions corresponding to permanent values of an absolute value of scalar field are obtained.


2012 ◽  
Vol 27 (33) ◽  
pp. 1250189 ◽  
Author(s):  
PRABIR RUDRA

In this work we have investigated the emergent scenario of the Universe described by loop quantum cosmology model, DGP brane model and Kaluza–Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the Universe. In loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component! In case of tachyonic field, emergent scenario is realized with some constraints on the value of ρ1 for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on [Formula: see text]. In Kaluza–Klein cosmology emergent scenario is possible only for a closed Universe in case of normal and phantom scalar field. For a tachyonic field, realization of emergent Universe is possible for all models (closed, open and flat).


1988 ◽  
Vol 03 (07) ◽  
pp. 645-651 ◽  
Author(s):  
SUMIO WADA

A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450043 ◽  
Author(s):  
Iñaki Garay ◽  
Salvador Robles-Pérez

We consider a multiverse scenario made up of classically disconnected regions of the spacetime that are, nevertheless, in a quantum entangled state. The addition of a scalar field enriches the model and allows us to treat both the inflationary and the "oscillatory stage" of the universe on the same basis. Imposing suitable boundary conditions on the state of the multiverse, two different representations are constructed related by a Bogoliubov transformation. We compute the thermodynamic magnitudes of the entanglement, such as entropy and energy, explore the effects introduced by the presence of the scalar field and compare with previous results in the absence of scalar field.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
M. F. Gusson ◽  
A. Oakes O. Gonçalves ◽  
R. G. Furtado ◽  
J. C. Fabris ◽  
J. A. Nogueira

AbstractIn this work, we consider effects of the dynamical vacuum in quantum cosmology in presence of a minimum length introduced by the GUP (generalized uncertainty principle) related to the modified commutation relation $$[{\hat{X}},{\hat{P}}] := \frac{i\hbar }{ 1 - \beta {\hat{P}}^2 }$$ [ X ^ , P ^ ] : = i ħ 1 - β P ^ 2 . We determine the wave function of the Universe $$ \psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) , which is solution of the modified Wheeler–DeWitt equation in the representation of the quasi-position space, in the limit where the scale factor of the Universe is small. Although $$\psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) is a physically acceptable state it is not a realizable state of the Universe because $$ \psi _{qp}(\xi ,t)$$ ψ qp ( ξ , t ) has infinite norm, as in the ordinary case with no minimal length.


Sign in / Sign up

Export Citation Format

Share Document