scholarly journals MOLECULAR CHARACTERIZATION OF GENE 16S rRNA MICRO SYMBIONTS IN SPONGE AT MELAWAI BEACH, EAST KALIMANTAN

2018 ◽  
Author(s):  
Ismail Marzuki ◽  
Alfian Noor ◽  
Nursiah La Nafie

Molecular characterization studies have been conducted 16S rRNA gene micro symbiont of sponge origin Melawai Beach, Balikpapan in East Kalimantan. Objective analysis of histo- morphological research, isolation-purification, molecular characterization of micro-symbiont genes in order to search symbiont bacteria that can live in extreme environments contaminated hydrocarbon waste. The research method that morphological identification, isolation-purification and molecular characterization of the 16S rRNA gene with Chain Reaction Polymerization method. The results of histo-morphological analysis concluded sponge samples with species of Callyspongia sp. Isolation and purification mikro symbionts of sponge obtained 2 (two) isolates. Characteristics of Isolates 1; spherical shape, colonize and creamy, while isolates 2; jagged shape, oval and white colonies. Molecular characterization of the 16S rRNA gene by PCR, Bacillus subtilis strain BAB-684 identification for isolates one is the number of nucleotide pairs reached 899 bp and the degree of similarity in GenBank reached 89% homologous, while the second is a Bacillus flexus strain PHCDB20 isolates the number reached 950 bp nucleotide pairs with the degree of similarity in GenBank reached 99% homologous

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Irene Cano ◽  
Ronny van Aerle ◽  
Stuart Ross ◽  
David W. Verner-Jeffreys ◽  
Richard K. Paley ◽  
...  

ABSTRACTOne of the fastest growing fisheries in the UK is the king scallop (Pecten maximusL.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resemblingRickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from “CandidatusEndonucleobacter bathymodioli” and 95% withEndozoicomonasspecies.In situhybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences fromEndozoicomonasspp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCEMolluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of anEndozoicomonas-like organism (ELO) associated with an important commercial scallop species.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111579
Author(s):  
Creciana M. Endres ◽  
Ícaro Maia S. Castro ◽  
Laura D. Trevisol ◽  
Juliana M. Severo ◽  
Michele B. Mann ◽  
...  

2008 ◽  
Vol 6 (4) ◽  
pp. 565-568 ◽  
Author(s):  
Amel Dhiaf ◽  
Amina Bakhrouf ◽  
Karl-Paul Witzel

Citrobacter freundii strain WA1 was stressed by incubation in seawater microcosms for eleven years. After two years of starvation, no culturable strain was observed. Incubation of samples in nutrient-rich broth medium not supplemented with growth factors, however, allowed resuscitation of VBNC cells so that subsequent plating yielded observable colonies for significantly extended periods of time. Recovery of VBNC Citrobacter freundii was obtained by incubation in nutrient broth even after eleven years of starvation. To see whether the samples contained the same strain of Citrobacter freundii inoculated 11 years ago. The complete 16S rRNA gene was PCR amplified and sequenced from initial, stressed and revived strains of Citrobacter freundii strain WA1.The 16S rRNA gene sequences from eleven-year stressed strains were homologous with a high degree of similarity to the GenBank reference strain and were identical to each other.


Author(s):  
M.K. Doley ◽  
S. Das ◽  
R.K. Sharma ◽  
P. Borah ◽  
D.K. Sarma ◽  
...  

Background: Riemerella anatipestifer (R. anatipestifer) is a gram negative, microaerophilic, non-motile, bipolar bacteria. High genetic diversity and molecular differentiation were reported among field isolates. Although the bacterium causes one of the most economically important duck diseases in the north-eastern region of India, little work has been done on isolation, identification and molecular characterization of the bacteria. Hence, the present investigation was undertaken with a view to characterize the R. anatipestifer isolates from ducks of Assam.Methods: Phenotypic and molecular identification of R. anatipestifer isolates from domesticated ducks of Assam, India were carried out during the period from February, 2019 to January 2020. A total of 624 samples (Ocular swab, throat swab, liver, spleen, kidney, brain, heart, lung) from ducks comprising of apparently healthy, ailing and dead ducks were collected from five districts of Assam, India were processed to isolate and identify the bacteria. The tentative identification of the bacteria was done based on phenotypic characteristics viz., colony morphology, growth characteristics and biochemical reactions. All the phenotypically positive isolates were further subjected to molecular identification based on PCR assay targeting 16S rRNA gene and ERIC sequence.Result: The bacteria could be isolated from different field samples. The highest percentage of the samples that yielded the bacteria are from brain (76%) followed by spleen (74%) of dead ducks and less number of ocular swab (33%) from apparently healthy ducks were found positive. Sequencing of the amplified product of the selected R. anatipestifer isolates targeting 16S rRNA gene revealed homology percentage of 96.5-100%. Further, sequences representing five geographical locations were submitted to NCBI gene bank. Phylogenetic studies of the isolates indicated that there is prevalence of at least two genetically different strains of R. anatipestifer in the study area. The study suggested that the R. anatipestifer infection is endemic in Assam causing varying rate of morbidity (39%) and mortality (53%) and molecular based confirmation is necessary besides phenotypic identification.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
John R. Erb-Downward ◽  
Nicole R. Falkowski ◽  
Jennifer C. D’Souza ◽  
Lisa M. McCloskey ◽  
Roderick A. McDonald ◽  
...  

ABSTRACT The bacterial microbiome of human body sites, previously considered sterile, remains highly controversial because it can be challenging to isolate signal from noise when low-biomass samples are being analyzed. We tested the hypothesis that stochastic sequencing noise, separable from reagent contamination, is generated during sequencing on the Illumina MiSeq platform when DNA input is below a critical threshold. We first purified DNA from serial dilutions of Pseudomonas aeruginosa and from negative controls using three DNA purification kits, quantified input using droplet digital PCR, and then sequenced the 16S rRNA gene in four technical replicates. This process identified reproducible contaminant signal that was separable from an irreproducible stochastic noise, which occurred as bacterial biomass of samples decreased. This approach was then applied to authentic respiratory samples from healthy individuals (n = 22) that ranged from high to ultralow bacterial biomass. Using oral rinse, bronchoalveolar lavage (BAL) fluid, and exhaled breath condensate (EBC) samples and matched controls, we were able to demonstrate (i) that stochastic noise dominates sequencing in real-world low-bacterial-biomass samples that contain fewer than 104 copies of the 16S rRNA gene per sample, (ii) that critical examination of the community composition of technical replicates can be used to separate signal from noise, and (iii) that EBC is an irreproducible sampling modality for sampling the microbiome of the lower airways. We anticipate that these results combined with suggested methods for identifying and dealing with noisy communities will facilitate increased reproducibility while simultaneously permitting characterization of potentially important low-biomass communities. IMPORTANCE DNA contamination from external sources (reagents, environment, operator, etc.) has long been assumed to be the main cause of spurious signals that appear under low-bacterial-biomass conditions. Here, we demonstrate that contamination can be separated from another, random signal generated during low-biomass-sample sequencing. This stochastic noise is not reproduced between technical replicates; however, results for any one replicate taken alone could look like a microbial community different from the controls. Using this information, we investigated respiratory samples from healthy humans and determined the narrow range of bacterial biomass where samples transition from producing reproducible microbial sequences to ones dominated by noise. We present a rigorous approach to studies involving low-bacterial-biomass samples to detect this source of noise and provide a framework for deciding if a sample is likely to be dominated by noise. We anticipate that this work will facilitate increased reproducibility in the characterization of potentially important low-biomass communities.


2020 ◽  
Vol 21 (9) ◽  
Author(s):  
Nassir Alyousif ◽  
YASIN Y.Y. AL LUAIBI ◽  
WIJDAN HUSSEIN

Abstract. Alyousif NA, Luaibi YYYA, Hussein W. 2020. Distribution and molecular characterization of biosurfactant-producing bacteria. Biodiversitas 21: 4034-4040. Biosurfactants (BSs) are biological surface-active compounds produced by several microorganisms with many areas of application, as such become an important product in biotechnology and consequence to be used in industries. In recent years, many researchers pay attention to BSs producers' microorganisms. The present study was aimed to isolate, identify, and screening BS producing bacteria from six various sites in two different cities in Iraq. Four samples were collected from four sites in Basrah governorate and the rest two samples from Al-Garraf oilfield in Thi-Qar governorate. A total of 33 different bacterial isolates were obtained, 20 out of the 33 were found to be biosurfactants producing isolates that detected through the emulsification index (E24%), oil spreading test, and emulsification activity. The isolated bacterial strains were more identified by 16S rRNA gene sequencing. The results showed that the biosurfactants producing isolates belonged to genera Bacillus, Pseudomonas, Enterobacter, Staphylococcus, Acinetobacter, and Aerococcus. Bacillus jeotgali and Aerococcus viridans are reporting as biosurfactant producing bacteria for the first time and Bacillus jeotgali is isolated for first time from crude oil of oilfield reservoir in this study in world. Moreover, six bacterial isolates were identified as new strains and deposited at NCBI Genbank under accession numbers MT261834 (Bacillus subtilis strain IRQNWYA3), MT261835 (Bacillus licheniformis strain IRQNWYB4), MT261836 (Pseudomonas stutzeri strain IRQNWYF2), MT261837 (Pseudomonas zhaodongensis strain IRQNWYF3), MT261838 (Pseudomonas sp. IRQNWYF4) and MT261839 (Bacillus licheniformis strain IRQNWYF5). A2 isolate that was identified as Pseudomonas aeruginosa has shown the highest values of emulsification activity and emulsification index (1.678±0.050 absorbance at 540 nm and 56.6% respectively) that show efficient potential of biosurfactant production. Phylogenetic tree was also constructed in this study based on 16S rRNA gene sequences of biosurfactant-producing bacteria to evaluate their close relationship and evolution between them.


Sign in / Sign up

Export Citation Format

Share Document