scholarly journals Parsimonious velocity inversion applied to the Los Angeles Basin, CA

2021 ◽  
Author(s):  
Jack Muir ◽  
Robert Clayton ◽  
Victor Tsai ◽  
Quentin Brissaud

The proliferation of dense arrays promises to improve our ability to image geological structures at the scales necessary for accurate assessment of seismic hazard. However, combining the resulting local high-resolution tomography with existing regional models presents an ongoing challenge. We developed a framework based on the level-set method that provides a means to infer where local data provides meaningful constraints beyond those found in regional models - e.g. the Community Velocity Models (CVMs) of southern California. This technique defines a volume within which updates are made to a reference CVM, with the boundary of the volume being part of the inversion rather than explicitly defined. By penalizing the complexity of the boundary, a minimal update that sufficiently explains the data is achieved. To test this framework, we use data from the Community Seismic Network, a dense permanent urban deployment. We inverted Love wave dispersion and amplification data, from the Mw 6.4 and 7.1 2019 Ridgecrest earthquakes. We invert for an update to CVM-S4.26 using the Tikhonov Ensemble Sampling scheme, a highly efficient derivative-free approximate Bayesian method. We find the data is best explained by a deepening of the Los Angeles Basin with its deepest part south of downtown Los Angeles, along with a steeper northeastern basin wall. This result offers new progress towards the parsimonious incorporation of detailed local basin models within regional reference models utilizing an objective framework and highlights the importance of accurate basin models when accounting for the amplification of surface waves in the high-rise building response band.

2020 ◽  
Vol 91 (6) ◽  
pp. 3370-3380
Author(s):  
Monica D. Kohler ◽  
Filippos Filippitzis ◽  
Thomas Heaton ◽  
Robert W. Clayton ◽  
Richard Guy ◽  
...  

Abstract The populace of Los Angeles, California, was startled by shaking from the M 7.1 earthquake that struck the city of Ridgecrest located 200 km to the north on 6 July 2019. Although the earthquake did not cause damage in Los Angeles, the experience in high-rise buildings was frightening in contrast to the shaking felt in short buildings. Observations from 560 ground-level accelerometers reveal large variations in shaking in the Los Angeles basin that occurred for more than 2 min. The observations come from the spatially dense Community Seismic Network (CSN), combined with the sparser Southern California Seismic Network and California Strong Motion Instrumentation Program networks. Site amplification factors for periods of 1, 3, 6, and 8 s are computed as the ratio of each station’s response spectral values combined for the two horizontal directions, relative to the average of three bedrock sites. Spatially coherent behavior in site amplification emerges for periods ≥3  s, and the maximum calculated site amplifications are the largest, by factors of 7, 10, and 8, respectively, for 3, 6, and 8 s periods. The dense CSN observations show that the long-period amplification is clearly, but only partially, correlated with the depth to basement. Sites with the largest amplifications for the long periods (≥3  s) are not close to the deepest portion of the basin. At 6 and 8 s periods, the maximum amplifications occur in the western part of the Los Angeles basin and in the south-central San Fernando Valley sedimentary basin. The observations suggest that the excitation of a hypothetical high-rise located in an area characterized by the largest site amplifications could be four times larger than in a downtown Los Angeles location.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2015 ◽  
Vol 315 (5) ◽  
pp. 412-459 ◽  
Author(s):  
B. Jung ◽  
G. Garven ◽  
J. R. Boles

Author(s):  
Fumiaki Nagashima ◽  
Hiroshi Kawase

Summary P-wave velocity (Vp) is an important parameter for constructing seismic velocity models of the subsurface structures by using microtremors and earthquake ground motions or any other geophysical exploration data. In order to reflect the ground survey information in Japan to the Vp structure, we investigated the relationships among Vs, Vp, and depth by using PS-logging data at all K-NET and KiK-net sites. Vp values are concentrated at around 500 m/s and 1,500 m/s when Vs is lower than 1,000 m/s, where these concentrated areas show two distinctive characteristics of unsaturated and saturated soil, respectively. Many Vp values in the layer shallower than 4 m are around 500 m/s, which suggests the dominance of unsaturated soil, while many Vp values in the layer deeper than 4 m are larger than 1,500 m/s, which suggests the dominance of saturated soil there. We also investigated those relationships for different soil types at K-NET sites. Although each soil type has its own depth range, all soil types show similar relationships among Vs, Vp, and depth. Then, considering the depth profile of Vp, we divided the dataset into two by the depth, which is shallower or deeper than 4 m, and calculated the geometrical mean of Vp and the geometrical standard deviation in every Vs bins of 200 m/s. Finally, we obtained the regression curves for the average and standard deviation of Vp estimated from Vs to get the Vp conversion functions from Vs, which can be applied to a wide Vs range. We also obtained the regression curves for two datasets with Vp lower and higher than 1,200 m/s. These regression curves can be applied when the groundwater level is known. In addition, we obtained the regression curves for density from Vs or Vp. An example of the application for those relationships in the velocity inversion is shown.


Sign in / Sign up

Export Citation Format

Share Document