scholarly journals Microstructure and fluid flow in rift border fault-bounded basins – insights from the Dombjerg Fault, NE Greenland

2021 ◽  
Author(s):  
Eric Salomon ◽  
Atle Rotevatn ◽  
Thomas Kristensen ◽  
Sten-Andreas Grundvåg ◽  
Gijs Henstra

In this contribution, we elucidate the interaction of structural deformation, fluid flow, and diagenesis in hanging wall siliciclastic deposits along rift basin-bounding faults, exemplified at the Dombjerg Fault in NE Greenland. Due to fault-controlled fluid circulation, fault-proximal syn-rift clastic deposits experienced pronounced calcite cementation and became lithified, whereas uncemented clastic deposits remained porous and friable. Correspondingly, two separate deformation regimes developed to accommodate continuous tectonic activity: discrete fractures formed in cemented deposits, and cataclastic deformation bands formed in uncemented deposits. We show that deformation bands act as partial baffles to fluid flow. This led to localized host rock alteration, which caused a chemical reduction of pore space along the bands. Where cemented, porosity was reduced towards zero and fracture formation created new pathways for fluid migration, which were subsequently filled with calcite. Occasionally, veins comprise multiple generations of microcrystalline calcite, which likely precipitated from an abruptly super-saturated fluid that was injected into the fracture. This suggests that cemented deposits sealed uncemented deposit bodies in which fluid overpressure was able to build up. We conclude that compartmentalized fluid flow regimes may form in rift fault-bounded basins, which has wide implications for assessments of potential carbon storage, hydrocarbon, groundwater, and geothermal sites.

2020 ◽  
Author(s):  
Mohamedharoon Shaikh ◽  
Deepak Maurya ◽  
Mukherjee Soumyajit ◽  
Naimisha Vanik ◽  
Abhishek Kumar ◽  
...  

<p>The deformation history along the E-W trending Kachchh rift basin at the western continental margin of the Indian plate located in the state of Gujarat, India, has been controlled by activation of NW-SE, NE-SW and E-W trending, 0.25–50 km long oblique-slip and dip-slip faults.</p><p>The study is an attempt to establish the kinematic framework along sub-parallel, NW-SE striking group of intra-uplift, striated, high-angle reverse faults, consisting of, Vigodi Fault (VF) and its bifurcation – West Vigodi Fault (WVF), Gugriana Fault (GUF) and its bifurcation – Khirasra fault (KHIF) from the western part of the Kachchh basin in the northern part of Gujarat state in western India. They meet the E-W trending master faults – the Kachchh Mainland Fault (KMF) to the north and the Katrol Hill Fault (KHF) to the south at an acute angle.</p><p>Fault-slip data consisting of fault plane and slickenside attitudes along with other kinematic indicators were recorded along the faults at 69 structural stations. A total of 1258 fault-slip data were used to carry out paleostress analysis using Win-Tensor (v.5.8.8) and T-Tecto Studio X5 by executing the Right Dihedral Method.</p><p>The NW-SE trending fault system exposes highly porous and permeable deformed sandstones belonging to the Jhuran and Bhuj Formation. The pure compaction bands, cataclastic deformation band clusters, slipped deformation bands and deformation band faults are documented. These tabular structures are densely populated in the fault damage zones of VF, WVF, GUF and KHIF. The field observations related to fluid flow conduits are discussed. We also present the field characteristics and petrographic evidences of chemical bleaching caused by fluid-rock interaction found in the Bhuj and the Jhuran sandstones. The change in the coloration pattern of deformation bands in comparison with the host rock color, presence of iron concretions, iron rinds and liesegang rings are important records of the diagenetic control over the fluid flow. The study is an attempt to the link the tectonic activity and simultaneous chemical reactions that affect the fluid flow transport.</p><p>We attribute the deformation history in the western continental margin of the Indian plate has been dominantly controlled by intraplate compressional stresses induced by anticlockwise rotation and collision of the Indian plate with the Eurasian plate at ~55 Ma. This correlates well with the Kachchh basin where rifting aborted during the Late Cretaceous, accommodated syn-rifting extensional component in the intra-uplift VF, GUF and KHIF. It has then undergone inversion phase due to onset of compressive stresses during the Post-Deccan Trap time up to the present. The NW-SE trending intra-uplift faults reactivated multiple times and generated deformation bands having high porosity contrast with the host Bhuj sandstone.</p>


2017 ◽  
Vol 96 (3) ◽  
Author(s):  
Fabian B. Wadsworth ◽  
Jérémie Vasseur ◽  
Edward W. Llewellin ◽  
Katherine J. Dobson ◽  
Mathieu Colombier ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 33
Author(s):  
A.A. Pashali ◽  
R.S. Khalfin ◽  
D.V. Silnov ◽  
A.S. Topolnikov ◽  
B.M. Latypov ◽  
...  

2021 ◽  
Author(s):  
Paul D. Bons ◽  
Tamara de Riese ◽  
Enrique Gomez-Rivas ◽  
Isaac Naaman ◽  
Till Sachau

<p>Fluids can circulate in all levels of the crust, as veins, ore deposits and chemical alterations and isotopic shifts indicate. It is furthermore generally accepted that faults and fractures play a central role as preferred fluid conduits. Fluid flow is, however, not only passively reacting to the presence of faults and fractures, but actively play a role in their creation, (re-) activation and sealing by mineral precipitates. This means that the interaction between fluid flow and fracturing is a two-way process, which is further controlled by tectonic activity (stress field), fluid sources and fluxes, as well as the availability of alternative fluid conduits, such as matrix porosity. Here we explore the interaction between matrix permeability and dynamic fracturing on the spatial and temporal distribution of fluid flow for upward fluid fluxes. Envisaged fluid sources can be dehydration reactions, release of igneous fluids, or release of fluids due to decompression or heating.</p><p> </p><p>Our 2D numerical cellular automaton-type simulations span the whole range from steady matrix-flow to highly dynamical flow through hydrofractures. Hydrofractures are initiated when matrix flow is insufficient to maintain fluid pressures below the failure threshold. When required fluid fluxes are high and/or matrix porosity low, flow is dominated by hydrofractures and the system exhibits self-organised critical phenomena. The size of fractures achieves a power-law distribution, as failure events may sometimes trigger avalanche-like amalgamation of hydrofractures. By far most hydrofracture events only lead to local fluid flow pulses within the source area. Conductive fracture networks do not develop if hydrofractures seal relatively quickly, which can be expected in deeper crustal levels. Only the larger events span the whole system and actually drain fluid from the system. We present the 10 square km hydrothermal Hidden Valley Mega-Breccia on the Paralana Fault System in South Australia as a possible example of large-scale fluid expulsion events. Although field evidence suggests that the breccia formed over a period of at least 150 Myrs, actual cumulative fluid duration may rather have been in the order of days only. This example illustrates the extreme dynamics that crustal-scale fluid flow in hydrofractures can achieve.</p>


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4684 ◽  
Author(s):  
Paulina Krakowska ◽  
Paweł Madejski

The paper presents results of fluid flow simulation in tight rock being potentially gas-bearing formation. Core samples are under careful investigation because of the high cost of production from the well. Numerical simulations allow determining absolute permeability based on computed X-ray tomography images of the rock sample. Computational fluid dynamics (CFD) give the opportunity to use the partial slip Maxwell model for permeability calculations. A detailed 3D geometrical model of the pore space was the input data. These 3D models of the pore space were extracted from the rock sample using highly specialized software poROSE (poROus materials examination SoftwarE, AGH University of Science and Technology, Kraków, Poland), which is the product of close cooperation of petroleum science and industry. The changes in mass flow depended on the pressure difference, and the tangential momentum accommodation coefficient was delivered and used in further quantitative analysis. The results of fluid flow simulations were combined with laboratory measurement results using a gas permeameter. It appeared that for the established parameters and proper fluid flow model (partial slip model, Tangential Momentum Accommodation Coefficient (TMAC), volumetric flow rate values), the obtained absolute permeability was similar to the permeability from the core test analysis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. C. Burridge ◽  
G. Wu ◽  
T. Reynolds ◽  
D. U. Shah ◽  
R. Johnston ◽  
...  

AbstractTimber is the only widely used construction material we can grow. The wood from which it comes has evolved to provide structural support for the tree and to act as a conduit for fluid flow. These flow paths are crucial for engineers to exploit the full potential of timber, by allowing impregnation with liquids that modify the properties or resilience of this natural material. Accurately predicting the transport of these liquids enables more efficient industrial timber treatment processes to be developed, thereby extending the scope to use this sustainable construction material; moreover, it is of fundamental scientific value — as a fluid flow within a natural porous medium. Both structural and transport properties of wood depend on its micro-structure but, while a substantial body of research relates the structural performance of wood to its detailed architecture, no such knowledge exists for the transport properties. We present a model, based on increasingly refined geometric parameters, that accurately predicts the time-dependent ingress of liquids within softwood timber, thereby addressing this long-standing scientific challenge. Moreover, we show that for the minimalistic parameterisation the model predicts ingress with a square-root-of-time behaviour. However, experimental data show a potentially significant departure from this $$\sqrt{{\boldsymbol{t}}}$$t behaviour — a departure which is successfully predicted by our more advanced parametrisation. Our parameterisation of the timber microstructure was informed by computed tomographic measurements; model predictions were validated by comparison with experimental data. We show that accurate predictions require statistical representation of the variability in the timber pore space. The collapse of our dimensionless experimental data demonstrates clear potential for our results to be up-scaled to industrial treatment processes.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 211-223 ◽  
Author(s):  
Emilie Janots ◽  
Alexis Grand'Homme ◽  
Matthias Bernet ◽  
Damien Guillaume ◽  
Edwin Gnos ◽  
...  

Abstract. A multi-method investigation into Lauzière granite, located in the external Belledonne massif of the French Alps, reveals unusually hot hydrothermal conditions in vertical open fractures (Alpine-type clefts). The host-rock granite shows sub-vertical mylonitic microstructures and partial retrogression at temperatures of < 400 ∘C during Alpine tectonometamorphism. Novel zircon fission-track (ZFT) data in the granite give ages at 16.3 ± 1.9 and 14.3 ± 1.6 Ma, confirming that Alpine metamorphism was high enough to reset the pre-Alpine cooling ages and that the Lauzière granite had already cooled below 240–280 ∘C and was exhumed to < 10 km at that time. Novel microthermometric data and chemical compositions of fluid inclusions obtained on millimetric monazite and on quartz crystals from the same cleft indicate early precipitation of monazite from a hot fluid at T > 410 ∘C, followed by a main stage of quartz growth at 300–320 ∘C and 1.5–2.2 kbar. Previous Th-Pb dating of cleft monazite at 12.4 ± 0.1 Ma clearly indicates that this hot fluid infiltration took place significantly later than the peak of the Alpine metamorphism. Advective heating due to the hot fluid flow caused resetting of fission tracks in zircon in the cleft hanging wall, with a ZFT age at 10.3 ± 1.0 Ma. The results attest to the highly dynamic fluid pathways, allowing the circulation of deep mid-crustal fluids, 150–250 ∘C hotter than the host rock, which affect the thermal regime only at the wall rock of the Alpine-type cleft. Such advective heating may impact the ZFT data and represent a pitfall for exhumation rate reconstructions in areas affected by hydrothermal fluid flow.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xiaojun Zhang ◽  
Haodong Han ◽  
Jun Peng ◽  
Yingchun Gou

Reservoir pore space assessment is of great significance for petroleum exploration and production. However, it is difficult to describe the pore characteristics of deep-buried dolomite reservoirs with the traditional linear method because these rocks have undergone strong modification by tectonic activity and diagenesis and show significant pore space heterogeneity. In this study, 38 dolostone samples from 4 Cambrian formations of Tarim Basin in NW China were collected and 135 thin section images were analyzed. Multifractal theory was used for evaluation of pore space heterogeneity in deep-buried dolostone based on thin section image analysis. The physical parameters, pore structure parameters, and multifractal characteristic parameters were obtained from the digital images. Then, the relationships between lithology and these parameters were discussed. In addition, the pore structure was classified into four categories using K-means clustering analysis based on multifractal parameters. The results show that the multifractal phenomenon generally exists in the pore space of deep-buried dolomite and that multifractal analysis can be used to characterize the heterogeneity of pore space in deep-buried dolomite. For these samples, multifractal parameters, such as αmin, αmax, ΔαL, ΔαR, Δf, and AI, correlate strongly with porosity but only slightly with permeability. However, the parameter Δα, which is usually used to reveal heterogeneity, does not show an obvious link with petrophysical properties. Of dolomites with different fabrics, fine crystalline dolomite and medium crystalline dolomite show the best petrophysical properties and show significant differences in multifractal parameters compared to other dolomites. More accurate porosity estimations were obtained with the multifractal generalized fractal dimension, which provides a new method for porosity prediction. The various categories derived from the K-means clustering analysis of multifractal parameters show distinct differences in petrophysical properties. This proves that reservoir evaluation and pore structure classification can be accurately performed with the K-means clustering analysis method based on multifractal parameters of pore space in deep-buried dolomite reservoirs.


Sign in / Sign up

Export Citation Format

Share Document