scholarly journals Influence Of Temperature And Pressure Of Incoming Oil-Containing Liquid From Field Wells On The Gas Separation Process

2020 ◽  
Author(s):  
Patkin AA ◽  
Sudad H Al-Obaidi

In terms of oilfield terminologies, separators are used to separate oil, gas, and water and to remove material such as entrained solid impurities from the crude oil produced from the wells. Optimization of separation process represents a challenging operation that can be achieved by improve the separation performance .This article is devoted to the analysis of changes in the process of separation of oil-containing liquid coming from field wells. It investigate the first stage of separation at the installation of preliminary water discharge and oil treatment, when the temperature and pressure of the liquid of the incoming medium change. It was observed that with an increase in temperature and a decrease in pressure, the process of gas separation increases.

2021 ◽  
Author(s):  
yaxin zhao ◽  
Huafeng Tian ◽  
yuge ouyang ◽  
Aimin Xiang ◽  
Xiaogang Luo ◽  
...  

Abstract Although polyvinyl alcohol (PVA) membranes are commonly used for CO2 separation, there is still large development space in mechanical properties and high selectivity of the gas separation process. In this study, the gas separation performance and mechanical properties of the (PVA/Cu2+) substrate membranes were improved by introducing polyamidoamine (PAMAM). PAMAM had an important effect on the gas adsorption and separation performance of the membrane. In addition, the gas adsorption and separation properties of the PVA/Cu2+/PAMAM membrane (PPCm) were analyzed and studied when the inlet gas pressure and the species of mixed gases were variable. The results showed that the crystallinity and mechanical properties of the membrane with the PAMAM had been significantly improved. Young’s modulus of PPCm with 30% PAMAM was 132% higher than that of the PVA/Cu2+ composite membrane without PAMAM. In addition, efficient separation efficiency and high selectivity of the gas separation process were observed. The separation factors of the PPCm for CO2/H2 and CO2/N2 were about three times higher than that of the PVA/Cu2+ substrate membranes. These results suggested that the introduction of PAMAM was promising for CO2 separation and permeation.


2016 ◽  
Vol 32 (2) ◽  
Author(s):  
Nor Naimah Rosyadah Ahmad ◽  
Hilmi Mukhtar ◽  
Dzeti Farhah Mohshim ◽  
Rizwan Nasir ◽  
Zakaria Man

AbstractThe development of mixed matrix membrane (MMM) in gas separation process has drawn great attention due to its promising properties. MMM consists of a polymer as the matrix phase, whereas the inorganic filler serves as the dispersed phase. However, poor contact between these two phases often results in unselective gas flow and becomes one of the major issues in the MMM development. Currently, various modification techniques of the inorganic filler to improve the compatibility between the polymers and the particles have been reported. Because of this modification, the CO


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1624
Author(s):  
Yong Li ◽  
Junrong Wang ◽  
Hui Ji ◽  
Ouyang Li ◽  
Songlin Nie

Gas pollution in marine lubricating oil systems is harmful to the normal operation of a ship, and is one of the main reasons for the decline of the performance of lubricating oil. In this research, a classic 75 mm hydrocyclone was selected as the oil–gas separation device. A hydrocyclone is a device that uses the density difference of the two-phase flow to separate the dispersed phase in the centrifugal force field. Compared with ordinary active oil–gas separators, hydrocyclones do not require additional power devices. After establishing the physical model of the hydrocyclone, the distribution characteristics of the flow field and oil–gas two-phase flow separation performance of the hydrocyclone were studied using computational fluid dynamics (CFD) technology. The influence of vortex finder diameter, vortex finder length, spigot diameter, cylindrical-part length, and cone angle on the oil–gas separation performance of the hydrocyclone were investigated. It was found that the vortex finder diameter and the spigot diameter have a significant influence on the oil–gas separation performance, whereas the vortex finder length, the cylindrical-part length, and the cone angle have little influence on its performance. Increasing the vortex finder diameter and reducing the spigot diameter can improve the gas separation efficiency. However, the liquid outflow from the vortex finder increases, which causes the liquid loss rate to increase. The presented research could lay a foundation for the optimal design of a hydrocyclone used for oil–gas separation of a marine lubricating oil system.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jianzhong Zhao ◽  
Yangsheng Zhao ◽  
Weiguo Liang

Hydrate-based separation experiments on simulate coal bed methane gas have been conducted in THF solution and SDS solution. In this work, a novel hydrate-based gas separation process was used to enhance CH4separation from a 65.7% CH4/20.2% N2/O2gas mixture in the presence of 300 ppm SDS and 19% THF solution. The characteristics of the CH4separation efficiency, fluctuation of temperature, and pressure were studied at different promoter solution. It was found that hydrate formation was induced by promoter in the solution and occurred immediately as the experiments were started. THF performed better than SDS for CH4separation from the CH4/N2/O2gas mixture. In particular, the separation coefficients of CH4and N2were compared in two solutions. The gas mixture S.Fr. or CH4recovery is increased from 1.056 to 1.259 while SF of N2is decreased from 1.183 to 0.634 in THF solution.


1991 ◽  
Vol 56 (3) ◽  
pp. 663-672 ◽  
Author(s):  
Curtis B. Anderson ◽  
Rade Marković

The influence of temperature and carbon monoxide pressure on the course of oxidative carbonylation reaction of 1,5-cyclooctadiene in the presence of the palladium(II) salts as a catalyst, was investigated.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Fernando Pardo ◽  
Sergio V. Gutiérrez-Hernández ◽  
Carolina Hermida-Merino ◽  
João M. M. Araújo ◽  
Manuel M. Piñeiro ◽  
...  

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32 = 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5086-5095
Author(s):  
Shuli Wang ◽  
Xiaohua Tong ◽  
Chunbo Wang ◽  
Xiaocui Han ◽  
Sizhuo Jin ◽  
...  

Effect of substituents on the dihedral angle and chain packing plays a critical role in the enhancement in the gas separation performance of polymer membranes.


Sign in / Sign up

Export Citation Format

Share Document