A method for predicting the capacity of a lithium-ion battery based on deep neural network
This paper proposes a solution to predict the capacity of the lithium-ion battery's capacity division process using deep learning methods. This solution extracts the physical observation records of part of the process steps from the chemical conversion and volumetric processes as features, and trains a Deep Neural Network (DNN) to achieve accurate prediction of battery capacity. According to the test, the average percentage absolute error (Mean Absolute Percentage Error, MAPE) of the battery capacity predicted by this model is only 0.78% compared with the true value. Combining this model with the production line can greatly reduce production time and energy consumption, and reduce battery production costs.