scholarly journals Comments on “Asynchronous Logic Implementation Based on Factorized DIMS”

2018 ◽  
Author(s):  
P Balasubramanian

This research correspondence comments on “Asynchronous Logic Implementation Based on Factorized DIMS” [Journal of Circuits, Systems, and Computers, vol. 26, no. 5, pp. 1750087-1-1750087-9, May 2017] with respect to two problematic issues: i) the gate orphan problem implicit in the factorized DIMS approach discussed in the referenced article which affects its strong-indication, and ii) how the enumeration of product terms to represent the synthesis cost is skewed in the referenced article because the logic expression contains sum of products and also product of sums. It is observed that the referenced article has not provided a general logic synthesis algorithm excepting only an example illustration involving a 3-input AND logic function. The absence of a general logic synthesis algorithm would make it difficult to reproduce the research described in the referenced article. Moreover, the example illustration in the referenced article describes an unsafe quasi-delay-insensitive logic decomposition which is not suitable for the multi-level synthesis of strong-indication asynchronous circuits. Further, a logic synthesis method which safely decomposes the DIMS solution to synthesize multi-level strong-indication asynchronous circuits is available in the existing literature, which was neither cited nor taken up for comparison in the referenced article, which is another drawback. Subsequently, it is concluded that the referenced article has not advanced existing knowledge in the field but on the contrary, has caused confusions. Hence, in the interest of readers, this work additionally highlights some important and relevant literature which provide valuable information about robust asynchronous circuit synthesis techniques which employ delay-insensitive codes for data representation and processing and a 4-phase handshake protocol (return-to-zero) for data communication.

Author(s):  
Apangshu Das ◽  
Sambhu Nath Pradhan

Background: Output polarity of the sub-function is generally considered to reduce the area and power of a circuit at the two-level realization. Along with area and power, the power-density is also one of the significant parameter which needs to be consider, because power-density directly converges to circuit temperature. More than 50% of the modern day integrated circuits are damaged due to excessive overheating. Methods: This work demonstrates the impact of efficient power density based logic synthesis (in the form of suitable polarity selection of sub-function of Programmable Logic Arrays (PLAs) for its multilevel realization) for the reduction of temperature. Two-level PLA optimization using output polarity selection is considered first and compared with other existing techniques and then And-Invert Graphs (AIG) based multi-level realization has been considered to overcome the redundant solution generated in two-level synthesis. AIG nodes and associated power dissipation can be reduced by rewriting, refactoring and balancing technique. Reduction of nodes leads to the reduction of the area but on the contrary increases power and power density of the circuit. A meta-heuristic search approach i.e., Nondominated Sorting Genetic Algorithm-II (NSGA-II) is proposed to select the suitable output polarity of PLA sub-functions for its optimal realization. Results: Best power density based solution saves up to 8.29% power density compared to ‘espresso – dopo’ based solutions. Around 9.57% saving in area and 9.67% saving in power (switching activity) are obtained with respect to ‘espresso’ based solution using NSGA-II. Conclusion: Suitable output polarity realized circuit is converted into multi-level AIG structure and synthesized to overcome the redundant solution at the two-level circuit. It is observed that with the increase in power density, the temperature of a particular circuit is also increases.


2014 ◽  
Vol 571-572 ◽  
pp. 825-828
Author(s):  
Xiang Zhang ◽  
Jun Hua Wang ◽  
Xiao Ling Xiao

The image inpainting method based on CriminiciA’s algorithm is slowly complete the image for large blank area. An improved algorithm based on the classic texture synthesis algorithm for image inpainting is proposed for imaging logging inpainting, which is used to generate the fullbore image. Two schemes, the local search method and priority calculation with TV model, are employed in the improved texture synthesis method. Some examples were given to demonstrate the effectiveness of the proposed algorithm on dealing with fullbore image construction with large blank area and raising efficiency obviously.


2020 ◽  
Author(s):  
John S. Hughes ◽  
Daniel J. Crichton

<p>The PDS4 Information Model (IM) Version 1.13.0.0 was released for use in December 2019. The ontology-based IM remains true to its foundational principles found in the Open Archive Information System (OAIS) Reference Model (ISO 14721) and the Metadata Registry (MDR) standard (ISO/IEC 11179). The standards generated from the IM have become the de-facto data archiving standards for the international planetary science community and have successfully scaled to meet the requirements of the diverse and evolving planetary science disciplines.</p><p>A key foundational principle is the use of a multi-level governance scheme that partitions the IM into semi-independent dictionaries. The governance scheme first partitions the IM vertically into three levels, the common, discipline, and project/mission levels. The IM is then partitioned horizontally across both discipline and project/mission levels into individual Local Data Dictionaries (LDDs).</p><p>The Common dictionary defines the classes used across the science disciplines such as product, collection, bundle, data formats, data types, and units of measurement. The dictionary resulted from a large collaborative effort involving domain experts across the community. An ontology modeling tool was used to enforce a modeling discipline, for configuration management, to ensure consistency and extensibility, and to enable interoperability. The Common dictionary encompasses the information categories defined in the OAIS RM, specifically data representation, provenance, fixity, identification, reference, and context. Over the last few years, the Common dictionary has remained relatively stable in spite of requirements levied by new missions, instruments, and more complex data types.</p><p>Since the release of the Common dictionary, the creation of a significant number of LDDs has proved the effectiveness of multi-level, steward-based governance. This scheme is allowing the IM to scale to meet the archival and interoperability demands of the evolving disciplines. In fact, an LDD development “cottage industry” has emerged that required improvements to the development processes and configuration management.  An LDD development tool now allows dictionary stewards to quickly produce specialized LDDs that are consistent with the Common dictionary.</p><p>The PDS4 Information Model is a world-class knowledge-base that governs the Planetary Science community's trusted digital repositories. This presentation will provide an overview of the model and additional information about its multi-level governance scheme including the topics of stewardship, configuration management, processes, and oversight.</p>


Sign in / Sign up

Export Citation Format

Share Document