Needleless electrospinning of PVP/PGS fibrous scaffolds for skin tissue engineering applications

Author(s):  
Antonios Keirouz ◽  
Giuseppino Fortunato ◽  
Anthony Callanan ◽  
Norbert Radacsi

Scaffolds and implants used for tissue engineering need to be adapted for their mechanical properties with respect to their environment within the human body. Therefore, a novel composite for skin tissue engineering is presented by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly(glycerol sebacate) (PGS) were fabricated via the needleless electrospinning technique. The formed PGS/PVP blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers related to the concentration of PGS, with high concentrations of PGS merging the fibers together plasticizing the scaffold. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of PGS/PVP significantly decreased and stabilized the wettability of the formed fiber mats, as indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblasts over the period of a week. The present findings provide important insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer, as a promising future candidate for skin substitute constructs.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mim Mim Lim ◽  
Tao Sun ◽  
Naznin Sultana

The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and blends of PCL with a natural polymer, gelatine (Ge), in three different compositions: 85 : 15, 70 : 30, and 50 : 50 were fabricated via an electrospinning technique. The nanofibrous scaffold prepared from 14% w/v PCL/Ge (70 : 30) exhibited more balanced properties of homogeneous nanofibres with an average fibre diameter of 155.60 ± 41.13 nm, 83% porosity, and surface roughness of 176.27 ± 2.53 nm.In vitrocell culture study using human skin fibroblasts (HSF) demonstrated improved cell attachment with a flattened morphology on the PCL/Ge (70 : 30) nanofibrous scaffold and accelerated proliferation on day 3 compared to the PCL nanofibrous scaffold. These results show that the PCL/Ge (70 : 30) nanofibrous scaffold was more favourable and has the potential to be a promising scaffold for skin tissue engineering applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chin Keong Lim ◽  
Ahmad Sukari Halim ◽  
Ismail Zainol ◽  
Kartini Noorsal

Chitosan is a copolymer ofN-acetylglucosamine and glucosamine. A bilayer chitosan porous skin regenerating template (CPSRT) has been developed for skin tissue engineering. The pore size of the CPSRT was assessed using a scanning electron microscopy (SEM). Thein vitrocytocompatibility of the CPSRT was tested on primary human epidermal keratinocyte (pHEK) cultures by measuring lactate dehydrogenase (LDH) levels and skin irritation by western blot analysis of the interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) secretions. The ability of the CPSRT to support cell ingrowth was evaluated by seeding primary human dermal fibroblasts (pHDFs) on the scaffold, staining the cells with live/dead stain, and imaging the construct by confocal microscopy (CLSM). The CPSRT with pore sizes ranging from 50 to 150 μm was cytocompatible because it did not provoke the additional production of IL-8 and TNF-α by pHEK cultures. Cultured pHDFs were able to penetrate the CPSRT and had increased in number on day 14. In conclusion, the CPSRT serves as an ideal template for skin tissue engineering.


2019 ◽  
Vol 20 (20) ◽  
pp. 5174 ◽  
Author(s):  
Hariharan Ezhilarasu ◽  
Raghavendra Ramalingam ◽  
Chetna Dhand ◽  
Rajamani Lakshminarayanan ◽  
Asif Sadiq ◽  
...  

Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers. SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and provided an effective wound dressing for skin tissue engineering.


2016 ◽  
Vol 136 (9) ◽  
pp. S173 ◽  
Author(s):  
N. Esselin ◽  
C. Capallere ◽  
C. Meyrignac ◽  
C. Plaza ◽  
C. Coquet ◽  
...  

2019 ◽  
Vol 105 (12) ◽  
pp. 4899-4907 ◽  
Author(s):  
Zhijie Huan ◽  
Weicheng Ma ◽  
Min Xu ◽  
Zhixiong Zhong ◽  
Xiangpeng Li ◽  
...  

2012 ◽  
Vol 39 (1) ◽  
pp. 33-58 ◽  
Author(s):  
Florian Groeber ◽  
Monika Holeiter ◽  
Martina Hampel ◽  
Svenja Hinderer ◽  
Katja Schenke-Layland

Author(s):  
Aleksandra Zuber ◽  
Julia Borowczyk ◽  
Eliza Zimolag ◽  
Malgorzata Krok ◽  
Zbigniew Madeja ◽  
...  

AbstractDegradable aliphatic polyesters such as polylactides, polyglycolides and their copolymers are used in several biomedical and pharmaceutical applications. We analyzed the influence of poly(L-lactide-co-glycolide) (PLGA) thin films on the adhesion, proliferation, motility and differentiation of primary human skin keratinocytes and fibroblasts in the context of their potential use as cell carriers for skin tissue engineering. We did not observe visible differences in the morphology, focal contact appearance, or actin cytoskeleton organization of skin cells cultured on PLGA films compared to those cultured under control conditions. Moreover, we did not detect biologically significant differences in proliferative activity, migration parameters, level of differentiation, or expression of vinculin when the cells were cultured on PLGA films and tissue culture polystyrene. Our results indicate that PLGA films do not affect the basic functions of primary human skin keratinocytes and fibroblasts and thus show acceptable biocompatibility in vitro, paving the way for their use as biomaterials for skin tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document