Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment

Author(s):  
Saman Naghieh ◽  
Ehsan Foroozmehr ◽  
Mohsen Badrossamay ◽  
Mahshid Kharaziha

In this research, hierarchical scaffolds including poly(lactic acid) (PLA) micro struts and nanocomposite gelatin-forsterite fibrous layers were developed using fused deposition modeling (FDM) and electrospinning (ES), respectively. Briefly, geometrically various groups of pure PLA scaffolds (interconnected pores of 230 to 390 μm) were fabricated using FDM technique. After mechanical evaluation, ES technique was utilized to develop gelatin-forsterite nanofibrous layer. To study these scaffolds, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and uniaxial compression tests were performed. Furthermore, bioactivity of the scaffolds was evaluated by immersing in the simulated body fluid and apatite formation on the surface of the scaffolds was investigated. Results depicted that elastic modulus of PLA/gelatin-forsterite scaffolds, fabricated by a combinational approach, was significantly higher than that of pure one (about 52%). SEM images showed the formation of calcium phosphate-like precipitates on the surface of these scaffolds, confirming the effects of nanocomposite fibrous layer on the improved bioactivity of the scaffolds. Regarding the obtained biological as well as mechanical properties, the developed bio-composite scaffolds can be used as a biocompatible candidate for bone tissue regeneration.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 258 ◽  
Author(s):  
Xiaohui Song ◽  
Wei He ◽  
Huadong Qin ◽  
Shoufeng Yang ◽  
Shifeng Wen

In this work Macadamia nutshell (MS) was used as filler in fused deposition modeling (FDM) of Poly (lactic acid) (PLA) composites filaments. Composites containing MS both treated and untreated with alkali and silane were investigated by means of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), Thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that the treated MS composites had better thermal stability. Furthermore, compression tests were carried out. The PLA with 10 wt% treated MS composite was found possessing the best mechanical properties which was almost equivalent to that of the pure PLA. Finally, porous scaffolds of PLA/10 wt% treated MS were fabricated. The scaffolds exhibited various porosities in range of 30–65%, interconnected holes in size of 0.3–0.5 mm, micro pores with dimension of 0.1–1 μm and 37.92–244.46 MPa of elastic modulus. Those values indicated that the FDM of PLA/MS composites have the potential to be used as weight lighter and structural parts.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1052-S1062
Author(s):  
Abraão CD Nascimento ◽  
Raquel CDAG Mota ◽  
Livia RD Menezes ◽  
Emerson OD Silva

3D printing techniques are of great interest in the sector of scaffold development aiming for bone tissue regeneration mainly due to the possibility of customizing the scaffold according to the area of the bone defect to be regenerated. Among the 3D printing techniques, the fused deposition modeling (FDM) stands out as promising because it does not require the use of solvents and toxic components throughout the manufacturing process of the scaffold. In this sense, the present article aims to evaluate the influence of the printing speed and the temperature of the printing head on the properties of poly(lactic acid) scaffolds. Three speeds of the printing head (4600 mm/min, 480 mm/min, and 500 mm/min) and two different extrusion temperatures (200oC and 220oC) were evaluated, maintaining the architecture and all other printing conditions constant. After obtaining the scaffolds, they were characterized by the following techniques: Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), time-domain nuclear magnetic resonance (TD-NMR), compressive modulus, L929 cell viability, and enzymatic degradation. The results obtained showed that the increase in printing temperature and speed was able to influence some properties of the material: increase crystallinity, compressive modulus, thermal resistance, and reduce molecular mobility and enzymatic degradation rate of the scaffolds. These findings are promising and indicate that, by altering only the basic parameters of 3D printing, it is possible to modulate the properties of the scaffolds obtained, to achieve greater crystallinity and a superior compressive modulus.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2020 ◽  
Author(s):  
Xiaohui Song ◽  
Wei He ◽  
Peiqi Chen ◽  
Qingsong Wei ◽  
Jingxian Wen ◽  
...  

2017 ◽  
Vol 134 (15) ◽  
Author(s):  
Wang Wang Yu ◽  
Jie Zhang ◽  
Jin Rong Wu ◽  
Xin Zhou Wang ◽  
Yu He Deng

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7122-7138
Author(s):  
Sang-U Bae ◽  
Young-Rok Seo ◽  
Birm-June Kim ◽  
Min Lee

Fused deposition modeling (FDM) 3D printing technology is the most common system for polymer additive manufacturing (AM). Recent studies have been conducted to expand both the range of materials that can be used for FDM and their applications. As a filler, wood flour was incorporated into poly lactic acid (PLA) polymer to develop a biocomposite material. Composite filaments were manufactured with various wood flour contents and then successfully used for 3D printing. Morphological, mechanical, and biodegradation properties of FDM 3D-printed PLA composites were investigated. To mitigate brittleness, 5 phr of maleic anhydride grafted ethylene propylene diene monomer (MA-EPDM) was added to the composite blends, and microstructural properties of the composites were examined by scanning electron microscopy (SEM). Mechanical strength tests demonstrated that elasticity was imparted to the composites. Additionally, test results showed that the addition of wood flour to the PLA matrix promoted pore generation and further influenced the mechanical and biodegradation properties of the 3D-printed composites. An excellent effect of wood flour on the biodegradation properties of FDM 3D-printed PLA composites was observed.


Sign in / Sign up

Export Citation Format

Share Document