scholarly journals An Insight for Cursive Context-Specific Printed Script Recognition

2021 ◽  
Author(s):  
Humera Rafique ◽  
Tariq Javid

The greatest challenge of machine learning problems is to select suitable techniques and resources such as tools and datasets. Despite the existence of millions of speakers around the globe and the rich literary history of more than a thousand years, it is expensive to find the computational linguistic work related to Punjabi Shahmukhi script, a member of the Perso-Arabic context-specific script low-resource language family. This paper presents a deep insight into the related work with summary statistics, advocating the popularity and success of artificial neural networks and related techniques. The paper includes support from recent trends from the authentic sources based on the top-level researchers' feedback including the machine learning frameworks. A comprehensive comparison of the most popular deep learning techniques convolutional neural network and the recursive neural network has been presented for the cursive context-specific scripts of Perso-Arabic nature. The overview of the available benchmark datasets for machine learning problems, especially for the Perso-Arabic group, is added. This paper incorporates essential knowledge contents for the researchers in machine learning and natural language processing disciplines on the selection of algorithms, architectures, and resources.

2021 ◽  
Vol 11 (11) ◽  
pp. 5228
Author(s):  
Waref Almanaseer ◽  
Mohammad Alshraideh ◽  
Omar Alkadi

Deep learning has emerged as a new area of machine learning research. It is an approach that can learn features and hierarchical representation purely from data and has been successfully applied to several fields such as images, sounds, text and motion. The techniques developed from deep learning research have already been impacting the research on Natural Language Processing (NLP). Arabic diacritics are vital components of Arabic text that remove ambiguity from words and reinforce the meaning of the text. In this paper, a Deep Belief Network (DBN) is used as a diacritizer for Arabic text. DBN is an algorithm among deep learning that has recently proved to be very effective for a variety of machine learning problems. We evaluate the use of DBNs as classifiers in automatic Arabic text diacritization. The DBN was trained to individually classify each input letter with the corresponding diacritized version. Experiments were conducted using two benchmark datasets, the LDC ATB3 and Tashkeela. Our best settings achieve a DER and WER of 2.21% and 6.73%, receptively, on the ATB3 benchmark with an improvement of 26% over the best published results. On the Tashkeela benchmark, our system continues to achieve high accuracy with a DER of 1.79% and 14% improvement.


Author(s):  
Joseph D. Romano ◽  
Trang T. Le ◽  
Weixuan Fu ◽  
Jason H. Moore

AbstractAutomated machine learning (AutoML) and artificial neural networks (ANNs) have revolutionized the field of artificial intelligence by yielding incredibly high-performing models to solve a myriad of inductive learning tasks. In spite of their successes, little guidance exists on when to use one versus the other. Furthermore, relatively few tools exist that allow the integration of both AutoML and ANNs in the same analysis to yield results combining both of their strengths. Here, we present TPOT-NN—a new extension to the tree-based AutoML software TPOT—and use it to explore the behavior of automated machine learning augmented with neural network estimators (AutoML+NN), particularly when compared to non-NN AutoML in the context of simple binary classification on a number of public benchmark datasets. Our observations suggest that TPOT-NN is an effective tool that achieves greater classification accuracy than standard tree-based AutoML on some datasets, with no loss in accuracy on others. We also provide preliminary guidelines for performing AutoML+NN analyses, and recommend possible future directions for AutoML+NN methods research, especially in the context of TPOT.


Terminology ◽  
2022 ◽  
Author(s):  
Ayla Rigouts Terryn ◽  
Véronique Hoste ◽  
Els Lefever

Abstract As with many tasks in natural language processing, automatic term extraction (ATE) is increasingly approached as a machine learning problem. So far, most machine learning approaches to ATE broadly follow the traditional hybrid methodology, by first extracting a list of unique candidate terms, and classifying these candidates based on the predicted probability that they are valid terms. However, with the rise of neural networks and word embeddings, the next development in ATE might be towards sequential approaches, i.e., classifying each occurrence of each token within its original context. To test the validity of such approaches for ATE, two sequential methodologies were developed, evaluated, and compared: one feature-based conditional random fields classifier and one embedding-based recurrent neural network. An additional comparison was added with a machine learning interpretation of the traditional approach. All systems were trained and evaluated on identical data in multiple languages and domains to identify their respective strengths and weaknesses. The sequential methodologies were proven to be valid approaches to ATE, and the neural network even outperformed the more traditional approach. Interestingly, a combination of multiple approaches can outperform all of them separately, showing new ways to push the state-of-the-art in ATE.


2020 ◽  
pp. 1-22 ◽  
Author(s):  
D. Sykes ◽  
A. Grivas ◽  
C. Grover ◽  
R. Tobin ◽  
C. Sudlow ◽  
...  

Abstract Using natural language processing, it is possible to extract structured information from raw text in the electronic health record (EHR) at reasonably high accuracy. However, the accurate distinction between negated and non-negated mentions of clinical terms remains a challenge. EHR text includes cases where diseases are stated not to be present or only hypothesised, meaning a disease can be mentioned in a report when it is not being reported as present. This makes tasks such as document classification and summarisation more difficult. We have developed the rule-based EdIE-R-Neg, part of an existing text mining pipeline called EdIE-R (Edinburgh Information Extraction for Radiology reports), developed to process brain imaging reports, (https://www.ltg.ed.ac.uk/software/edie-r/) and two machine learning approaches; one using a bidirectional long short-term memory network and another using a feedforward neural network. These were developed on data from the Edinburgh Stroke Study (ESS) and tested on data from routine reports from NHS Tayside (Tayside). Both datasets consist of written reports from medical scans. These models are compared with two existing rule-based models: pyConText (Harkema et al. 2009. Journal of Biomedical Informatics42(5), 839–851), a python implementation of a generalisation of NegEx, and NegBio (Peng et al. 2017. NegBio: A high-performance tool for negation and uncertainty detection in radiology reports. arXiv e-prints, p. arXiv:1712.05898), which identifies negation scopes through patterns applied to a syntactic representation of the sentence. On both the test set of the dataset from which our models were developed, as well as the largely similar Tayside test set, the neural network models and our custom-built rule-based system outperformed the existing methods. EdIE-R-Neg scored highest on F1 score, particularly on the test set of the Tayside dataset, from which no development data were used in these experiments, showing the power of custom-built rule-based systems for negation detection on datasets of this size. The performance gap of the machine learning models to EdIE-R-Neg on the Tayside test set was reduced through adding development Tayside data into the ESS training set, demonstrating the adaptability of the neural network models.


2020 ◽  
Author(s):  
Monalisha Ghosh ◽  
Goutam Sanyal

Abstract ­­­­­­­­­­­­­­­­­­­­­­­­­­­ Sentiment Analysis has recently been considered as the most active research field in the natural language processing (NLP) domain. Deep Learning is a subset of the large family of Machine Learning and becoming a growing trend due to its automatic learning capability with impressive consequences across different NLP tasks. Hence, a fusion-based Machine Learning framework has been attempted by merging the Traditional Machine Learning method with Deep Learning techniques to tackle the challenge of sentiment prediction for a massive amount of unstructured review dataset. The proposed architecture aims to utilize the Convolutional Neural Network (CNN) with a backpropagation algorithm to extract embedded feature vectors from the top hidden layer. Thereafter, these vectors augmented to an optimized feature set generated from binary particle swarm optimization (BPSO) method. Finally, a traditional SVM classifier is trained with these extended features set to determine the optimal hyper-plane for separating two classes of review datasets. The evaluation of this research work has been carried out on two benchmark movie review datasets IMDB, SST2. Experimental results with comparative studies based on performance accuracy and F-score value are reported to highlight the benefits of the developed frameworks.


2019 ◽  
Vol 8 (3) ◽  
pp. 7809-7817

Creating a fast domain independent ontology through knowledge acquisition is a key problem to be addressed in the domain of knowledge engineering. Updating and validation is impossible without the intervention of domain experts, which is an expensive and tedious process. Thereby, an automatic system to model the ontology has become essential. This manuscript presents a machine learning model based on heterogeneous data from multiple domains including agriculture, health care, food and banking, etc. The proposed model creates a complete domain independent process that helps in populating the ontology automatically by extracting the text from multiple sources by applying natural language processing and various techniques of data extraction. The ontology instances are classified based on the domain. A Jaccord Relationship extraction process and the Neural Network Approval for Automated Theory is used for retrieval of data, automated indexing, mapping and knowledge discovery and rule generation. The results and solutions show the proposed model can automatically and efficiently construct automated Ontology


2019 ◽  
Author(s):  
Emmanuel L.C. de los Santos

ABSTRACTSignificant progress has been made in the past few years on the computational identification biosynthetic gene clusters (BGCs) that encode ribosomally synthesized and post-translationally modified peptides (RiPPs). This is done by identifying both RiPP tailoring enzymes (RTEs) and RiPP precursor peptides (PPs). However, identification of PPs, particularly for novel RiPP classes remains challenging. To address this, machine learning has been used to accurately identify PP sequences. However, current machine learning tools have limitations, since they are specific to the RiPP-class they are trained for, and are context-dependent, requiring information about the surrounding genetic environment of the putative PP sequences. NeuRiPP overcomes these limitations. It does this by leveraging the rich data set of high-confidence putative PP sequences from existing programs, along with experimentally verified PPs from RiPP databases. NeuRiPP uses neural network models that are suitable for peptide classification with weights trained on PP datasets. It is able to identify known PP sequences, and sequences that are likely PPs. When tested on existing RiPP BGC datasets, NeuRiPP is able to identify PP sequences in significantly more putative RiPP clusters than current tools, while maintaining the same HMM hit accuracy. Finally, NeuRiPP was able to successfully identify PP sequences from novel RiPP classes that are recently characterized experimentally, highlighting its utility in complementing existing bioinformatics tools.


2019 ◽  
Author(s):  
Rainier Barrett ◽  
Maghesree Chakraborty ◽  
Dilnoza Amirkulova ◽  
Heta Gandhi ◽  
Andrew White

<div> <div> <div> <p>As interest grows in applying machine learning force-fields and methods to molecular simulation, there is a need for state-of-the-art inference methods to use trained models within efficient molecular simulation engines. We have designed and implemented software that enables integration of a scalable GPU-accelerated molecular mechanics engine, HOOMD-blue, with the machine learning (ML) TensorFlow package. TensorFlow is a GPU-accelerated, scalable, graph-based tensor computation model building package that has been the implementation of many recent innovations in deep learning and other ML tasks. TensorFlow models are constructed in Python and can be visualized or debugged using the rich set of tools implemented in the TensorFlow package. In this article, we present four major examples of tasks this software can accomplish which would normally require multiple different tools: (1) we train a neural network to reproduce a force field of a Lennard-Jones simulation; (2) we perform online force matching of methanol; (3) we compute the maximum entropy bias of a Lennard-Jones collective variable; (4) we calculate the scattering profile of an ongoing TIP4P water molecular dynamics simulation. This work should accelerate both the design of new neural network based models in computational chemistry research and reproducible model specification by leveraging a widely-used ML package.</p></div></div></div>


Author(s):  
Mirza Murtaza

Abstract Sentiment analysis of text can be performed using machine learning and natural language processing methods. However, there is no single tool or method that is effective in all cases. The objective of this research project is to determine the effectiveness of neural network-based architecture to perform sentiment analysis of customer comments and reviews, such as the ones on Amazon site. A typical sentiment analysis process involves text preparation (of acquired content), sentiment detection, sentiment classification and analysis of results. In this research, the objective is to a) identify the best approach for text preparation in a given application (text filtering approach to remove errors in data), and, most importantly, b) what is the best machine learning (feed forward neural nets, convolutional neural nets, Long Short-Term Memory networks) approach that provides best classification accuracy. In this research, a set of three thousand two hundred reviews of food related products were used to train and experiment with a neural network-based sentiment analysis system. The neural network implementation of six different models provided close to one-hundred percent accuracy of test data, and a decent test accuracy in mid-80%. The results of the research would be useful to businesses in evaluating customer preferences for products or services.  


2020 ◽  
Author(s):  
Yuanren Tong ◽  
Keming Lu ◽  
Yingyun Yang ◽  
Ji Li ◽  
Yucong Lin ◽  
...  

Abstract Background: Differentiating between ulcerative colitis (UC), Crohn’s disease (CD) and intestinal tuberculosis (ITB) using endoscopy is challenging. We aimed to realize automatic differential diagnosis among these diseases through machine learning algorithms. Methods: A total of 6399 consecutive patients (5128 UC, 875 CD and 396 ITB) who had undergone colonoscopy examinations in the Peking Union Medical College Hospital from January 2008 to November 2018 were enrolled. The input was the description of the endoscopic image in the form of free text. Word segmentation and key word filtering were conducted as data preprocessing. Random forest (RF) and convolutional neural network (CNN) approaches were applied to different disease entities. Three two-class classifiers (UC and CD, UC and ITB, and CD and ITB) and a three-class classifier (UC, CD and ITB) were built. Results: The classifiers built in this research performed well, and the CNN had better performance in general. The RF sensitivities/specificities of UC-CD, UC-ITB, and CD-ITB were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively, while the values for the CNN of CD-ITB were 0.90/0.77. The precisions/recalls of UC-CD-ITB when employing RF were 0.97/0.97, 0.65/0.53, and 0.68/0.76, respectively, and when employing the CNN were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively.Conclusions: Classifiers built by RF and CNN approaches had excellent performance when classifying UC with CD or ITB. For the differentiation of CD and ITB, high specificity and sensitivity were achieved as well. Artificial intelligence through machine learning is very promising in helping unexperienced endoscopists differentiate inflammatory intestinal diseases.


Sign in / Sign up

Export Citation Format

Share Document