scholarly journals Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth

2017 ◽  
Author(s):  
Kyle Stanley Burger

OBJECTIVE: Although soft drinks are heavily advertised, widely consumed, and have been associated with obesity, little is understood regarding neural responsivity to soft drink intake, anticipated intake, and advertisements. METHODS: Functional MRI was used to assess examine neural response to carbonated soft drink intake, anticipated intake and advertisement exposure as well as milkshake intake in 27 adolescents that varied on soft drink consumer status.RESULTS: Intake and anticipated intake of carbonated Coke® activated regions implicated in gustatory, oral somatosensory, and reward processing, yet high-fat/sugar milkshake intake elicited greater activation in these regions versus Coke intake. Advertisements highlighting the Coke product vs. non-food control advertisements, but not the Coke logo, activated gustatory and visual brain regions. Habitual Coke consumers vs. non-consumers showed greater posterior cingulate responsivity to Coke logo ads, suggesting that the logo is a conditioned cue. Coke consumers exhibited less ventrolateral prefrontal cortex responsivity during anticipated Coke intake relative to non-consumers. CONCLUSIONS: Results indicate that soft drinks activate reward and gustatory regions, but are less potent in activating these regions than high-fat/sugar beverages, and imply that habitual soft drink intake promotes hyper-responsivity of regions encoding salience/attention toward brand specific cues and hypo-responsivity of inhibitory regions while anticipating intake.

1988 ◽  
Vol 71 (6) ◽  
pp. 1212-1214
Author(s):  
Anna-Maija K SJÖBERG

Abstract Fifteen official food control laboratories participated in a collaborative study of a spectrophotometric method to determine cyclamate in a soft drink and a dessert at concentrations of 90-311 mg/L and 202-526 mg/kg, respectively, with blind duplicates and a blank. Average recovery from the soft drink was 97.5%, and from the dessert, 98.6%. Reproducibility relative standard deviations were 4.7-6.5% and 6.9-8.5%, respectively. The outlier percentage was 5.5%. This study complements an earlier work by leading Nordic food laboratories and was designed according to the latest recommendations. The results of this study were compared with those of the earlier collaborative study and with general collaborative results obtained by AOAC.


2008 ◽  
Vol 20 (9) ◽  
pp. 1670-1686 ◽  
Author(s):  
Adam Hampshire ◽  
Aleksandra Gruszka ◽  
Sean J. Fallon ◽  
Adrian M. Owen

Studies of the aging brain have demonstrated that areas of the frontal cortex, along with their associated top-down executive control processes, are particularly prone to the neurodegenerative effects of age. Here, we investigate the effects of aging on brain and behavior using a novel task, which allows us to examine separate components of an individual's chosen strategy during routine problem solving. Our findings reveal that, contrary to previous suggestions of a specific decrease in cognitive flexibility, older participants show no increased level of perseveration to either the recently rewarded object or the recently relevant object category. In line with this lack of perseveration, lateral and medial regions of the orbito-frontal cortex, which are associated with inhibitory control and reward processing, appear to be functionally intact. Instead, a general loss of efficient problem-solving strategy is apparent with a concomitant decrease in neural activity in the ventrolateral prefrontal cortex and the posterior parietal cortex. The dorsolateral prefrontal cortex is also affected during problem solving, but age-related decline within this region appears to occur at a later stage.


2020 ◽  
Author(s):  
Shai Sabbah ◽  
Michael S. Worden ◽  
Daniel Laniado ◽  
Rebeca Waugh ◽  
David M. Berson ◽  
...  

AbstractLight impacts mood and cognition of humans and other animals in ways we are only beginning to recognize. These effects are thought to depend upon a specialized retinal output signal arising from intrinsically photosensitive retinal ganglion cells (ipRGCs) that is being dedicated to a stable representation of the intensity of environmental light. Insights from animal studies now implicate a previously unknown pathway in the effects of environmental light on mood. A subset of ipRGCs transmits light-intensity information to the dorsothalamic perihabenular nucleus, which in turn, innervates the medial prefrontal cortex that plays a key role in mood regulation. While the prefrontal cortex has been implicated in depression and other mood disorders, its ability to encode the level of environmental light (luminance) has never been reported. Here, as a first step to probing for a similar retino-thalamo-frontocortical circuit in humans, we used functional magnetic resonance imaging (fMRI) to identify brain regions in which activity depended on luminance level where activity was modulated either transiently or persistently by light. Twelve brain regions altered their steady-state activity according to luminance level. Most were in the prefrontal cortex or in the classic thalamocortical visual pathway; others were found in the cerebellum, caudate, and pineal. Prefrontal cortex and pineal exhibited reduced BOLD signal in bright light, while the other centers exhibited increased BOLD signals. The light-evoked prefrontal response was affected by light history and closely resembled those of ipRGCs. Although we did not find clear correspondence between the luxotonic regions in humans and those in mice, the persistence and luxotonic nature of light-evoked responses in the human prefrontal cortex may suggest that it receives input from ipRGCs, just like in the mouse. We also found seventeen regions in which activity varied only transiently with luminance level. These regions, which are involved in visual processing, motor control, and cognition, were in the cerebral cortex, diverse subcortical structures, and cerebellum. Therefore, our results demonstrate the effects of light on diverse brain centers that contribute to motor control, cognition, emotion, and reward processing.


2010 ◽  
Vol 103 (3) ◽  
pp. 1569-1579 ◽  
Author(s):  
Maro G. Machizawa ◽  
Roger Kalla ◽  
Vincent Walsh ◽  
Leun J. Otten

Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (∼4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between ≥350 and 1,150 ms after an event is encountered.


2020 ◽  
Author(s):  
Dominic I. Standage ◽  
Corson N. Areshenkoff ◽  
Daniel J. Gale ◽  
Joseph Y. Nashed ◽  
J. Randall Flanagan ◽  
...  

AbstractIndividuals exhibit differences in learning ability, the neural bases of which are unclear. We used human functional MRI to show that whole-brain network dynamics during the early stages of sensorimotor adaptation predict the patterns of learning that emerge across two days of adaptation and readaptation. A clustering of participant behavioural data revealed three distinct profiles of learners: individuals who learned quickly on both days, individuals who learned slowly on both days, and individuals who learned slowly on the first day, but quickly on the second day. These learning profiles were related to the degree of whole-brain modular reconfiguration exhibited during early learning on the first day, and with the selective recruitment of a cognitive network of brain regions, including areas in anterior temporal and prefrontal cortex. These findings demonstrate that across-day profiles of adaptation can be traced to differences in brain dynamics that manifest during initial learning.


2004 ◽  
Vol 16 (9) ◽  
pp. 1505-1516 ◽  
Author(s):  
Katrien Denys ◽  
Wim Vanduffel ◽  
Denis Fize ◽  
Koen Nelissen ◽  
Hiromasa Sawamura ◽  
...  

The prefrontal cortex supports many cognitive abilities, which humans share to some degree with monkeys. The specialized functions of the prefrontal cortex depend both on the nature of its inputs from other brain regions and on distinctive aspects of local processing. We used functional MRI to compare prefrontal activity between monkey and human subjects when they viewed identical images of objects, either intact or scrambled. Visual object-related activation of the lateral prefrontal cortex was observed in both species, but was stronger in monkeys than in humans, both in magnitude (factors 2–3) and in spatial extent (fivefold or more as a percentage of prefrontal volume). This difference was observed for two different stimulus sets, at two field strengths, and over a range of tasks. These results suggest that there may be more volitional control over visual processing in humans than in monkeys.


Author(s):  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Doo-Sup Choi ◽  
Mi-Hyeon Jang

AbstractPsychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


Sign in / Sign up

Export Citation Format

Share Document