scholarly journals Visual Activation in Prefrontal Cortex is Stronger in Monkeys than in Humans

2004 ◽  
Vol 16 (9) ◽  
pp. 1505-1516 ◽  
Author(s):  
Katrien Denys ◽  
Wim Vanduffel ◽  
Denis Fize ◽  
Koen Nelissen ◽  
Hiromasa Sawamura ◽  
...  

The prefrontal cortex supports many cognitive abilities, which humans share to some degree with monkeys. The specialized functions of the prefrontal cortex depend both on the nature of its inputs from other brain regions and on distinctive aspects of local processing. We used functional MRI to compare prefrontal activity between monkey and human subjects when they viewed identical images of objects, either intact or scrambled. Visual object-related activation of the lateral prefrontal cortex was observed in both species, but was stronger in monkeys than in humans, both in magnitude (factors 2–3) and in spatial extent (fivefold or more as a percentage of prefrontal volume). This difference was observed for two different stimulus sets, at two field strengths, and over a range of tasks. These results suggest that there may be more volitional control over visual processing in humans than in monkeys.

2020 ◽  
Author(s):  
Shai Sabbah ◽  
Michael S. Worden ◽  
Daniel Laniado ◽  
Rebeca Waugh ◽  
David M. Berson ◽  
...  

AbstractLight impacts mood and cognition of humans and other animals in ways we are only beginning to recognize. These effects are thought to depend upon a specialized retinal output signal arising from intrinsically photosensitive retinal ganglion cells (ipRGCs) that is being dedicated to a stable representation of the intensity of environmental light. Insights from animal studies now implicate a previously unknown pathway in the effects of environmental light on mood. A subset of ipRGCs transmits light-intensity information to the dorsothalamic perihabenular nucleus, which in turn, innervates the medial prefrontal cortex that plays a key role in mood regulation. While the prefrontal cortex has been implicated in depression and other mood disorders, its ability to encode the level of environmental light (luminance) has never been reported. Here, as a first step to probing for a similar retino-thalamo-frontocortical circuit in humans, we used functional magnetic resonance imaging (fMRI) to identify brain regions in which activity depended on luminance level where activity was modulated either transiently or persistently by light. Twelve brain regions altered their steady-state activity according to luminance level. Most were in the prefrontal cortex or in the classic thalamocortical visual pathway; others were found in the cerebellum, caudate, and pineal. Prefrontal cortex and pineal exhibited reduced BOLD signal in bright light, while the other centers exhibited increased BOLD signals. The light-evoked prefrontal response was affected by light history and closely resembled those of ipRGCs. Although we did not find clear correspondence between the luxotonic regions in humans and those in mice, the persistence and luxotonic nature of light-evoked responses in the human prefrontal cortex may suggest that it receives input from ipRGCs, just like in the mouse. We also found seventeen regions in which activity varied only transiently with luminance level. These regions, which are involved in visual processing, motor control, and cognition, were in the cerebral cortex, diverse subcortical structures, and cerebellum. Therefore, our results demonstrate the effects of light on diverse brain centers that contribute to motor control, cognition, emotion, and reward processing.


Coming of Age ◽  
2019 ◽  
pp. 56-68
Author(s):  
Cheryl L. Sisk ◽  
Russell D. Romeo

Chapter 5 focuses on adolescent maturation of cognitive abilities and executive function—the capacity to control and coordinate thoughts and behavior. Executive function emerges from interactions among three major brain regions: the prefrontal cortex (behavioral modulation), amygdala (emotional valence), and ventral striatum (motivation and reward). The triadic model provides a conceptual framework for understanding the neural basis for higher risk-taking by adolescents. This model proposes that adolescent maturation of prefrontal cortex, striatum, and amygdala occurs along different time frames, with the striatum and amygdala maturing sooner than the prefrontal cortex. Thus, early in adolescence, decisions and behaviors are more heavily influenced by rewards and emotions in the face of relative lack of prefrontal control. As the prefrontal cortex matures during late adolescence, decisions and behaviors become more guided by executive function. This chapter also discusses research on the importance of social context and peer pressure in decision-making by adolescents. Finally, the chapter discusses how research showing that prefrontal maturation is protracted (extending into the third decade of life) has influenced court decisions and shaped policy in the U.S. juvenile justice system.


2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 157-170 ◽  
Author(s):  
Joseph R. Simpson ◽  
Dost Öngür ◽  
Erbil Akbudak ◽  
Thomas E. Conturo ◽  
John M. Ollinger ◽  
...  

The functional neuroanatomy of visual processing of surface features of emotionally valenced pictorial stimuli was examined in normal human subjects using functional magnetic resonance imaging (fMRI). Pictorial stimuli were of two types: emotionally negative and neutral pictures. Task performance was slower for the negatively valenced than for the neutral pictures. Significant blood oxygen level dependent (BOLD) increases occurred in the medial and dorsolateral prefrontal cortex, midbrain, substantia innominata, and/or amygdala, and in the posterior cortical visual areas for both stimulus types. Increases were greater for the negatively valenced stimuli. While there was a small but significant BOLD decrease in the subgenual prefrontal cortex, which was larger in response to the negatively valenced pictures, there was an almost complete absence of other decreases prominently seen during the performance of demanding cognitive tasks [Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648-663]. These results provide evidence that the emotional valence and arousing nature of stimuli used during the performance of an attention-demanding cognitive task are reflected in discernable, quantitative changes in the functional anatomy associated with task performance.


2017 ◽  
Author(s):  
Kyle Stanley Burger

OBJECTIVE: Although soft drinks are heavily advertised, widely consumed, and have been associated with obesity, little is understood regarding neural responsivity to soft drink intake, anticipated intake, and advertisements. METHODS: Functional MRI was used to assess examine neural response to carbonated soft drink intake, anticipated intake and advertisement exposure as well as milkshake intake in 27 adolescents that varied on soft drink consumer status.RESULTS: Intake and anticipated intake of carbonated Coke® activated regions implicated in gustatory, oral somatosensory, and reward processing, yet high-fat/sugar milkshake intake elicited greater activation in these regions versus Coke intake. Advertisements highlighting the Coke product vs. non-food control advertisements, but not the Coke logo, activated gustatory and visual brain regions. Habitual Coke consumers vs. non-consumers showed greater posterior cingulate responsivity to Coke logo ads, suggesting that the logo is a conditioned cue. Coke consumers exhibited less ventrolateral prefrontal cortex responsivity during anticipated Coke intake relative to non-consumers. CONCLUSIONS: Results indicate that soft drinks activate reward and gustatory regions, but are less potent in activating these regions than high-fat/sugar beverages, and imply that habitual soft drink intake promotes hyper-responsivity of regions encoding salience/attention toward brand specific cues and hypo-responsivity of inhibitory regions while anticipating intake.


2020 ◽  
Author(s):  
Dominic I. Standage ◽  
Corson N. Areshenkoff ◽  
Daniel J. Gale ◽  
Joseph Y. Nashed ◽  
J. Randall Flanagan ◽  
...  

AbstractIndividuals exhibit differences in learning ability, the neural bases of which are unclear. We used human functional MRI to show that whole-brain network dynamics during the early stages of sensorimotor adaptation predict the patterns of learning that emerge across two days of adaptation and readaptation. A clustering of participant behavioural data revealed three distinct profiles of learners: individuals who learned quickly on both days, individuals who learned slowly on both days, and individuals who learned slowly on the first day, but quickly on the second day. These learning profiles were related to the degree of whole-brain modular reconfiguration exhibited during early learning on the first day, and with the selective recruitment of a cognitive network of brain regions, including areas in anterior temporal and prefrontal cortex. These findings demonstrate that across-day profiles of adaptation can be traced to differences in brain dynamics that manifest during initial learning.


Author(s):  
Lee Peyton ◽  
Alfredo Oliveros ◽  
Doo-Sup Choi ◽  
Mi-Hyeon Jang

AbstractPsychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ben Somers ◽  
Christopher J. Long ◽  
Tom Francart

AbstractThe cochlear implant is one of the most successful medical prostheses, allowing deaf and severely hearing-impaired persons to hear again by electrically stimulating the auditory nerve. A trained audiologist adjusts the stimulation settings for good speech understanding, known as “fitting” the implant. This process is based on subjective feedback from the user, making it time-consuming and challenging, especially in paediatric or communication-impaired populations. Furthermore, fittings only happen during infrequent sessions at a clinic, and therefore cannot take into account variable factors that affect the user’s hearing, such as physiological changes and different listening environments. Objective audiometry, in which brain responses evoked by auditory stimulation are collected and analysed, removes the need for active patient participation. However, recording of brain responses still requires expensive equipment that is cumbersome to use. An elegant solution is to record the neural signals using the implant itself. We demonstrate for the first time the recording of continuous electroencephalographic (EEG) signals from the implanted intracochlear electrode array in human subjects, using auditory evoked potentials originating from different brain regions. This was done using a temporary recording set-up with a percutaneous connector used for research purposes. Furthermore, we show that the response morphologies and amplitudes depend crucially on the recording electrode configuration. The integration of an EEG system into cochlear implants paves the way towards chronic neuro-monitoring of hearing-impaired patients in their everyday environment, and neuro-steered hearing prostheses, which can autonomously adjust their output based on neural feedback.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander A. Aabedi ◽  
Sofia Kakaizada ◽  
Jacob S. Young ◽  
Jasleen Kaur ◽  
Olivia Wiese ◽  
...  

AbstractLexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


Sign in / Sign up

Export Citation Format

Share Document