scholarly journals Reconstructed evolutionary patterns for crocodile-line archosaurs demonstrate impact of failure to log-transform body size data

2021 ◽  
Author(s):  
Roger Benson ◽  
Pedro L Godoy ◽  
Mario Bronzati ◽  
Richard Butler ◽  
William Gearty

Pseudosuchia includes crocodylians, plus all extinct species more closely related to them than to birds. They appeared around 250 million years ago and have a rich fossil history, showing extinct diversity that exceeds that of their living members1-4. Recently, Stockdale & Benton5 presented analyses of a new dataset of body size estimates spanning the entire evolutionary history of this group. They quantified patterns of average body size, body size disparity through time, and rates of evolution along phylogenetic lineages. Their results suggest that pseudosuchians exhibited considerable variation in rates of body size evolution, for which they provided various group-specific explanations and asserted the importance of climatic drivers. This differs from two recent studies that analysed a substantial portion of pseudosuchian body size evolution and proposed that adaptation to aquatic life, a biological innovation of some subgroups, was the main driver of body size evolution, with patterns of disparity also being influenced by size-dependent extinction risk6,7. Here we show that the analytical results of Stockdale & Benton5 are strongly influenced by a methodological error in their body size index. Specifically, that they chose not to log-transform measurement data prior to analyses.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1555 ◽  
Author(s):  
Neil Brocklehurst

Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived captorhinids rather than a shift in diet, but the evidence for this is circumstantial.


2015 ◽  
Author(s):  
Neil Brocklehurst

Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study, examining the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian, concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact it is those which experience a size decrease which evolve at significantly higher rates. The opposite is true of the carnivorous lineages, suggesting that in captorhinids it is the carnivores which show the greater trend towards increased body size. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived captorhinids rather than a shift in diet, but the evidence for this is circumstantial.


2015 ◽  
Author(s):  
Neil Brocklehurst

Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study, examining the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian, concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact it is those which experience a size decrease which evolve at significantly higher rates. The opposite is true of the carnivorous lineages, suggesting that in captorhinids it is the carnivores which show the greater trend towards increased body size. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived captorhinids rather than a shift in diet, but the evidence for this is circumstantial.


2018 ◽  
Vol 49 (1) ◽  
pp. 379-408 ◽  
Author(s):  
Roger B.J. Benson

Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.


2001 ◽  
Vol 268 (1476) ◽  
pp. 1589-1593 ◽  
Author(s):  
Louis J. D'Amico ◽  
Goggy Davidowitz ◽  
H. Frederik Nijhout

2017 ◽  
Vol 284 (1849) ◽  
pp. 20162361 ◽  
Author(s):  
Shan Huang ◽  
Jussi T. Eronen ◽  
Christine M. Janis ◽  
Juha J. Saarinen ◽  
Daniele Silvestro ◽  
...  

Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context.


2018 ◽  
Vol 27 (5) ◽  
pp. 538-550 ◽  
Author(s):  
Yuval Itescu ◽  
Rachel Schwarz ◽  
Colin M. Donihue ◽  
Alex Slavenko ◽  
Stephanos A. Roussos ◽  
...  

2020 ◽  
Vol 287 (1918) ◽  
pp. 20192615 ◽  
Author(s):  
Michael D. Burns ◽  
Devin D. Bloom

Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle.


Sign in / Sign up

Export Citation Format

Share Document