The myth of visual “depth cues” I: “Height in the visual field”

2021 ◽  
Author(s):  
Lydia Maniatis

The idea that our visual system forms a representation of the 3D world by employing various “depth cues” is well-established in mainstream vision science (e.g. Brenner & Smeets, 2018). The idea does not hold up to critical scrutiny. Here, I discuss why the idea that the height of a perceived unit in the visual field is a “cue”to its relative distance from the viewer is both unreliable and circular.

2019 ◽  
Vol 31 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Wladimir Kirsch ◽  
Roland Pfister ◽  
Wilfried Kunde

An object appears smaller in the periphery than in the center of the visual field. In two experiments ( N = 24), we demonstrated that visuospatial attention contributes substantially to this perceptual distortion. Participants judged the size of central and peripheral target objects after a transient, exogenous cue directed their attention to either the central or the peripheral location. Peripheral target objects were judged to be smaller following a central cue, whereas this effect disappeared completely when the peripheral target was cued. This outcome suggests that objects appear smaller in the visual periphery not only because of the structural properties of the visual system but also because of a lack of spatial attention.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


2014 ◽  
Vol 523 (2) ◽  
pp. 226-250 ◽  
Author(s):  
Quirin Krabichler ◽  
Tomas Vega-Zuniga ◽  
Cristian Morales ◽  
Harald Luksch ◽  
Gonzalo J. Marín

2019 ◽  
Author(s):  
Chloé Stoll ◽  
Matthew William Geoffrey Dye

While a substantial body of work has suggested that deafness brings about an increased allocation of visual attention to the periphery there has been much less work on how using a signed language may also influence this attentional allocation. Signed languages are visual-gestural and produced using the body and perceived via the human visual system. Signers fixate upon the face of interlocutors and do not directly look at the hands moving in the inferior visual field. It is therefore reasonable to predict that signed languages require a redistribution of covert visual attention to the inferior visual field. Here we report a prospective and statistically powered assessment of the spatial distribution of attention to inferior and superior visual fields in signers – both deaf and hearing – in a visual search task. Using a Bayesian Hierarchical Drift Diffusion Model, we estimated decision making parameters for the superior and inferior visual field in deaf signers, hearing signers and hearing non-signers. Results indicated a greater attentional redistribution toward the inferior visual field in adult signers (both deaf and hearing) than in hearing sign-naïve adults. The effect was smaller for hearing signers than for deaf signers, suggestive of either a role for extent of exposure or greater plasticity of the visual system in the deaf. The data provide support for a process by which the demands of linguistic processing can influence the human attentional system.


Stroke ◽  
2001 ◽  
Vol 32 (suppl_1) ◽  
pp. 334-334
Author(s):  
Gereon Nelles ◽  
Guido Widmann ◽  
Joachim Esser ◽  
Anette Meistrowitz ◽  
Johannes Weber ◽  
...  

102 Introduction: Restitution of unilateral visual field defects following occipital cortex lesions occurs rarely. Partial recovery, however, can be observed in patients with incomplete lesion of the visual cortex. Our objective was to study the neuroplastic changes in the visual system that underlie such recovery. Methods and Results: Six patients with a left PCA-territory cortical stroke and 6 healthy control subjects were studied during rest and during visual stimulation using a 1.5 T fMRI with a 40 mT gradient. Visual stimuli were projected with a laptop computer onto a 154 x 115 cm screen, placed 90 cm in front of the gantry. Subjects were asked to fixate a red point in the center of the screen during both conditions. During stimulation, a black-and-white checkerboard pattern reversal was presented in each hemifield. For each side, 120 volumes of 48 contiguous axial fMRI images were obtained during rest and during hemifield stimulation in alternating order (60 volumes for each condition). Significant differences of rCBF between stimulation and rest were assessed as group analyses using statistical parametric mapping (SPM 99; p<0.01, corrected for multiple comparison). In controls, strong increases of rCBF (Z=7.6) occurred in the contralateral primary visual cortex V1 (area 17) and in V3a (area 18) and V5 (area 19). No differences were found between the right and left side in controls. During stimulation of the unaffected (left) visual field in hemianopic patients, activation occurred in contralateral V1, but the strongest increases of rCBF (Z>10) were seen in contralateral V3a (area 18) and V5 (area 19). During stimulation of the hemianopic (right) visual field, no activation was found in the primary visual cortex of either hemisphere. The most significant activation (Z=9.2) was seen in the ipsilateral V3a and V5 areas, and contralateral (left) V3a. Conclusions: Partial recovery from hemianopia is associated with strong ipsilateral activation of the visual system. Processing of visual stimuli in the hemianopic side spares the primary visual cortex and may involve recruitment of neurons in ipsilateral (contralesional) areas V3a and V5.


Perception ◽  
10.1068/p3393 ◽  
2003 ◽  
Vol 32 (4) ◽  
pp. 395-414 ◽  
Author(s):  
Marina V Danilova ◽  
John D Mollon

The visual system is known to contain hard-wired mechanisms that compare the values of a given stimulus attribute at adjacent positions in the visual field; but how are comparisons performed when the stimuli are not adjacent? We ask empirically how well a human observer can compare two stimuli that are separated in the visual field. For the stimulus attributes of spatial frequency, contrast, and orientation, we have measured discrimination thresholds as a function of the spatial separation of the discriminanda. The three attributes were studied in separate experiments, but in all cases the target stimuli were briefly presented Gabor patches. The Gabor patches lay on an imaginary circle, which was centred on the fixation point and had a radius of 5 deg of visual angle. Our psychophysical procedures were designed to ensure that the subject actively compared the two stimuli on each presentation, rather than referring just one stimulus to a stored template or criterion. For the cases of spatial frequency and contrast, there was no systematic effect of spatial separation up to 10 deg. We conclude that the subject's judgment does not depend on discontinuity detectors in the early visual system but on more central codes that represent the two stimuli individually. In the case of orientation discrimination, two naïve subjects performed as in the cases of spatial frequency and contrast; but two highly trained subjects showed a systematic increase of threshold with spatial separation, suggesting that they were exploiting a distal mechanism designed to detect the parallelism or non-parallelism of contours.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maureen G. Maguire

Clinical trials for conditions affecting the visual system need to not only conform to the guidelines for all clinical trials, but also accommodate the possibility of both eyes of a single patient qualifying for the trial. In this review, I present the interplay of the key components in the design of a clinical trial, along with the modifications or options that may be available for trials addressing ocular conditions. Examples drawn from published reports of the design and results of clinical trials of ocular conditions are provided to illustrate application of the design principles. Current approaches to data analysis and reporting of trials are outlined, and the oversight and regulatory procedures to protect participants in clinical trials are discussed. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Lydia Maniatis

The popular idea that “shading” is a shape and depth “cue” is the result of a failure to appreciate that neither shading as a physical fact nor shading as a perceptual fact can serve to explain the process leading to visual experience, because the description “shading” does not apply to the proximal stimulation, where this process begins. Both perceived shape and perceived illumination are products of figural constraints.


Vision ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 13
Author(s):  
Katharina Weiß

Although visual attention is one of the most thoroughly investigated topics in experimental psychology and vision science, most of this research tends to be restricted to the near periphery. Eccentricities used in attention studies usually do not exceed 20° to 30°, but most studies even make use of considerably smaller maximum eccentricities. Thus, empirical knowledge about attention beyond this range is sparse, probably due to a previous lack of suitable experimental devices to investigate attention in the far periphery. This is currently changing due to the development of temporal high-resolution projectors and head-mounted displays (HMDs) that allow displaying experimental stimuli at far eccentricities. In the present study, visual attention was investigated beyond the near periphery (15°, 30°, 56° Exp. 1) and (15°, 35°, 56° Exp. 2) in a peripheral Posner cueing paradigm using a discrimination task with placeholders. Interestingly, cueing effects were revealed for the whole range of eccentricities although the inhomogeneity of the visual field and its functional subdivisions might lead one to suspect otherwise.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 59-59
Author(s):  
J M Zanker ◽  
M P Davey

Visual information processing in primate cortex is based on a highly ordered representation of the surrounding world. In addition to the retinotopic mapping of the visual field, systematic variations of the orientation tuning of neurons are described electrophysiologically for the first stages of the visual stream. On the way to understanding the relation of position and orientation representation, in order to give an adequate account of cortical architecture, it will be an essential step to define the minimum spatial requirements for detection of orientation. We addressed the basic question of spatial limits for detecting orientation by comparing computer simulations of simple orientation filters with psychophysical experiments in which the orientation of small lines had to be detected at various positions in the visual field. At sufficiently high contrast levels, the minimum physical length of a line whose orientation can just be resolved is not constant when presented at various eccentricities, but covaries inversely with the cortical magnification factor. A line needs to span less than 0.2 mm on the cortical surface in order to be recognised as oriented, independently of the actual eccentricity at which the stimulus is presented. This seems to indicate that human performance for this task approaches the physical limits, requiring hardly more than approximately three input elements to be activated, in order to detect the orientation of a highly visible line segment. Combined with the estimates for receptive field sizes of orientation-selective filters derived from computer simulations, this experimental result may nourish speculations of how the rather local elementary process underlying orientation detection in the human visual system can be assembled to form much larger receptive fields of the orientation-sensitive neurons known to exist in the primate visual system.


Sign in / Sign up

Export Citation Format

Share Document