Artifical grammar learning and its neurobiology in relation to language processing and development

2017 ◽  
Author(s):  
Julia Udden ◽  
Claudia Männel

The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. We present a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, we review the evidence for involvement of the posterior temporal cortex in AGL. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.

Author(s):  
Julia Uddén ◽  
Claudia Männel

The artificial grammar learning (AGL) paradigm enables systematic investigation of the acquisition of linguistically relevant structures. It is a paradigm of interest for language processing research, interfacing with theoretical linguistics, and for comparative research on language acquisition and evolution. This chapter presents a key for understanding major variants of the paradigm. An unbiased summary of neuroimaging findings of AGL is presented, using meta-analytic methods, pointing to the crucial involvement of the bilateral frontal operculum and regions in the right lateral hemisphere. Against a background of robust posterior temporal cortex involvement in processing complex syntax, the evidence for involvement of the posterior temporal cortex in AGL is reviewed. Infant AGL studies testing for neural substrates are reviewed, covering the acquisition of adjacent and non-adjacent dependencies as well as algebraic rules. The language acquisition data suggest that comparisons of learnability of complex grammars performed with adults may now also be possible with children.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


1998 ◽  
Vol 18 (10) ◽  
pp. 1157-1161 ◽  
Author(s):  
Hans Karbe ◽  
Karl Herholz ◽  
Marco Halber ◽  
Wolf-Dieter Heiss

The corpus callosum is the largest connection between the functionally asymmetric cerebral hemispheres. The objective of this study was to measure functional activity of callosal fiber tracts during speech processing. We analyzed the regional glucose metabolism of the corpus callosum and of speech-relevant cortical areas in 10 normal individuals at rest and during word repetition. We used three-dimensionally registered magnetic resonance imaging to visualize the individual brain morphology and high-resolution positron emission tomography for metabolic measurements. The task-induced metabolic changes of the callosal midbody and isthmus had a significant negative correlation with key regions of language processing in the left inferior frontal cortex (Brodmann's area 44) and in the right superior temporal cortex (Brodmann's area 22) (e.g., correlation of metabolic changes in the surface aspects of the right Brodmann's area 22 and the callosal midbody/isthmus: r = −0.91, P < 0.001). The study indicates that language processing in asymmetrically organized cortical areas inhibits the reciprocal transcallosal information exchange in favor of the lateralized mental operation. Our data agree with anatomic, electrophysiologic, and pharmacologic experiments that point to the important role of collateral inhibition for the transcallosal information exchange.


2011 ◽  
Vol 91 (4) ◽  
pp. 1357-1392 ◽  
Author(s):  
Angela D. Friederici

Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.


2001 ◽  
Vol 13 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Jon S. Simons ◽  
Kim S. Graham ◽  
Adrian M. Owen ◽  
Karalyn Patterson ◽  
John R. Hodges

Previous studies have suggested differences in the neural substrates of recognition memory when the contributions of perceptual and semantic information are manipulated. In a within-subjects design PET study, we investigated the neural correlates of the following factors: material type (objects or faces), semantic knowledge (familiar or unfamiliar items), and perceptual similarity at study and test (identical or different pictures). There was consistent material-specific lateralization in frontal and temporal lobe regions when the retrieval of different types of nonverbal stimuli was compared, with objects activating bilateral areas and faces preferentially activating the right hemisphere. Retrieval of memories for nameable, familiar items was associated with increased activation in the left ventrolateral prefrontal cortex, while memory for unfamiliar items involved occipital regions. Recognition memory for different pictures of the same item at study and test produced blood flow increase in left inferior temporal cortex. These results have implications for our understanding of the neural correlates of perceptual and semantic contributions to recognition memory.


Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

This chapter reviews the neural underpinning of normal language acquisition and asks not only at which age certain milestones in language acquisition are achieved, but moreover to what extent is this achievement dependent on the maturation of particular brain structures. In our recent model, the neural basis of the developing language system is described to reflect two major phases. The available data provide consistent evidence that very early on an infant is able to extract language-relevant information from the acoustic input. This first phase covers the first three years of life when language processing is largely input-driven and supported by the temporal cortex and the ventral part of the network. A second phase extends beyond age 3, when top-down processes come into play, and the left inferior frontal cortex and the dorsal part of the language network are recruited to a larger extent. Development towards full language performance beyond age 3 is dependent on maturational changes in the gray and white matter. An increased language ability is correlated with an increase in structural and functional connectivity between language-related brain regions in the left hemisphere, the inferior frontal gyrus and the posterior superior temporal gyrus/superior temporal sulcus.


2022 ◽  
Author(s):  
Hung-Yu Liu ◽  
Pei-Lin Lee ◽  
Kun-Hsien Chou ◽  
Yen-Feng Wang ◽  
Shih-Pin Chen ◽  
...  

Abstract Many patients with fibromyalgia (FM) experience fatigue, but the associated biological mechanisms have not been delineated. We aimed to investigate the neural signatures associated with fatigue severity in patients with FM using MRI. We consecutively recruited 138 patients with FM and collected their clinical profiles and brain-MRI data. We categorized the patients into 3 groups based on their fatigue severity. Using voxel-based morphometry analysis and trend analysis, we first identified neural structures showing volumetric changes associated with fatigue severity, and further explored their seed-to-voxel structural covariance networks (SCNs). Results showed decreased bilateral thalamic volumes were associated with higher severity of fatigue. There was a more widespread distribution of the thalamic SCNs to the frontal, parietal, subcortical, and limbic regions in patients with higher fatigue severity. In addition, increased right inferior temporal cortex volumes were associated with higher severity of fatigue. The right inferior temporal seed showed more SCNs distributions over the temporal cortex and a higher strength of SCNs to the bilateral occipital cortex in patients with higher fatigue severity. The thalamus and the right inferior temporal cortex as well as their altered interactions with cortical and subcortical regions comprise the neural signatures of fatigue in FM.


Mousaion ◽  
2019 ◽  
Vol 36 (3) ◽  
Author(s):  
Chimango Nyasulu ◽  
Winner Chawinga ◽  
George Chipeta

Governments the world over are increasingly challenging universities to produce human resources with the right skills sets and knowledge required to drive their economies in this twenty-first century. It therefore becomes important for universities to produce graduates that bring tangible and meaningful contributions to the economies. Graduate tracer studies are hailed to be one of the ways in which universities can respond and reposition themselves to the actual needs of the industry. It is against this background that this study was conducted to establish the relevance of the Department of Information and Communication Technology at Mzuzu University to the Malawian economy by systematically investigating occupations of its former students after graduating from the University. The study adopted a quantitative design by distributing an online-based questionnaire with predominantly closed-ended questions. The study focused on three key objectives: to identify key employing sectors of ICT graduates, to gauge the relevance of the ICT programme to its former students’ jobs and businesses, and to establish the level of satisfaction of the ICT curriculum from the perspectives of former ICT graduates. The key findings from the study are that the ICT programme is relevant to the industry. However, some respondents were of the view that the curriculum should be strengthened by revising it through an addition of courses such as Mobile Application Development, Machine Learning, Natural Language Processing, Data Mining, and LINUX Administration to keep abreast with the ever-changing ICT trends and job requirements. The study strongly recommends the need for regular reviews of the curriculum so that it is continually responding to and matches the needs of the industry.


2020 ◽  
Author(s):  
Isabelle Hesling

The modalities of communication are the sum of the expression dimension (linguistics) and the expressivity dimension (prosody), both being equally important in language communication. The expressivity dimension which comes first in the act of speech, is the basis on which phonemes, syllables, words, grammar and morphosyntax, i.e., the expression dimension of speech is superimposed. We will review evidence (1) revealing the importance of prosody in language acquisition and (2) showing that prosody triggers the involvement of specific brain areas dedicated to sentences and word-list processing. To support the first point, we will not only rely on experimental psychology studies conducted in newborns and young children but also on neuroimaging studies that have helped to validate these behavioral experiments. Then, neuroimaging data on adults will allow for concluding that the expressivity dimension of speech modulates both the right hemisphere prosodic areas and the left hemisphere network in charge of the expression dimension


2019 ◽  
Author(s):  
Krisztina Sára Lukics ◽  
Ágnes Lukács

First language acquisition is facilitated by several characteristics of infant-directed speech, but we know little about their relative contribution to learning different aspects of language. We investigated infant-directed speech effects on the acquisition of a linear artificial grammar in two experiments. We examined the effect of incremental presentation of strings (starting small) and prosody (comparing monotonous, arbitrary and phrase prosody). Presenting shorter strings before longer ones led to higher learning rates compared to random presentation. Prosody marking phrases had a similar effect, yet, prosody without marking syntactic units did not facilitate learning. These studies were the first to test the starting small effect with a linear artificial grammar, and also the first to investigate the combined effect of starting small and prosody. Our results suggest that starting small and prosody facilitate the extraction of regularities from artificial linguistic stimuli, indicating they may play an important role in natural language acquisition.


Sign in / Sign up

Export Citation Format

Share Document