scholarly journals Consciousness Fluctuates with Surprise: An empirical pre-study for the synthesis of the Free Energy Principle and Integrated Information Theory

2020 ◽  
Author(s):  
Peter Thestrup Waade ◽  
Christoffer Lundbak Olesen ◽  
Martin Masahito Ito ◽  
Christoph Mathys

The Free Energy Principle (FEP) and Integrated Information Theory (IIT) are two ambitious theoretical frameworks, the first aiming to make a general formal description of self-organization and life-like processes, and the second attempting a mathematical theory of conscious experience based on the intrinsic properties of a system. They are each concerned with complementary aspects of the properties of systems, one with life and behavior the other with meaning and experience, so combining them has potentially great scientific value. In this paper, we take a first step towards this synthesis by first partially replicating the results of the evolutionary simulation study by Albantakis et al. (2014) that show a relationship between IIT-measures and fitness in differing complexities of tasks. We then relate FEP-related information theoretic measures to this result, finding that the surprisal of simulated agents’ system states follows the general increase in fitness over evolutionary time, and that it fluctuates together with IIT-based consciousness measures in within-trial time. This suggests that the consciousness measures of IIT indirectly depend on the relation between the agent and the external world, and that they therefore should be related to concepts directly used in the FEP. Lastly, we suggest a future approach for investigating this relationship empirically.

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 60
Author(s):  
Jonathan Mason

Over recent decades several mathematical theories of consciousness have been put forward including Karl Friston’s Free Energy Principle and Giulio Tononi’s Integrated Information Theory. In this article we further investigate theory based on Expected Float Entropy (EFE) minimisation which has been around since 2012. EFE involves a version of Shannon Entropy parameterised by relationships. It turns out that, for systems with bias due to learning, certain choices for the relationship parameters are isolated since giving much lower EFE values than others and, hence, the system defines relationships. It is proposed that, in the context of all these relationships, a brain state acquires meaning in the form of the relational content of the associated experience. EFE minimisation is itself an association learning process and its effectiveness as such is tested in this article. The theory and results are consistent with the proposition of there being a close connection between association learning processes and the emergence of consciousness. Such a theory may explain how the brain defines the content of consciousness up to relationship isomorphism.


2021 ◽  
Author(s):  
Romain Brette

Integrated Information Theory postulates that a conscious experience depends on a repertoire of hypothetical experiences (the axiom of information). This makes consciousness depend on the context that constrains the set of possibilities and on the scenarios imagined by the external observer, and not only on the system itself.


2020 ◽  
Author(s):  
Adam Safron

In introducing a model of “relaxed beliefs under psychedelics” (REBUS), Carhart-Harris and Friston (2019) have presented a compelling account of the effects of psychedelics on brain and mind. This model is contextualized within the Free Energy Principle (Friston et al., 2006; Friston, 2010), which may represent the first unified paradigm in the mind and life sciences. By this view, mental systems adaptively regulate their actions and interactions with the world via predictive models, whose dynamics are governed by a singular objective of minimizing prediction-error, or “free energy.” According to REBUS, psychedelics flatten the depth of free energy landscapes, or the differential attracting forces associated with various (Bayesian) beliefs, so promoting flexibility in inference and learning. Here, I would like to propose an alternative account of the effects of psychedelics that is in many ways compatible with REBUS, albeit with some important differences. Based on considerations of the distributions of 5-HT2a receptors within cortical laminae and canonical microcircuits for predictive coding, I propose that 5-HT2a agonism may also involve a strengthening of beliefs, particularly at intermediate levels of abstraction associated with conscious experience (Safron, 2020).


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 362
Author(s):  
Leonardo S. Barbosa ◽  
William Marshall ◽  
Larissa Albantakis ◽  
Giulio Tononi

The Integrated Information Theory (IIT) of consciousness starts from essential phenomenological properties, which are then translated into postulates that any physical system must satisfy in order to specify the physical substrate of consciousness. We recently introduced an information measure (Barbosa et al., 2020) that captures three postulates of IIT—existence, intrinsicality and information—and is unique. Here we show that the new measure also satisfies the remaining postulates of IIT—integration and exclusion— and create the framework that identifies maximally irreducible mechanisms. These mechanisms can then form maximally irreducible systems, which in turn will specify the physical substrate of conscious experience.


Author(s):  
Johannes Kleiner ◽  
Sean Tull

Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background.


2020 ◽  
Author(s):  
Angus Leung ◽  
Dror Cohen ◽  
Bruno van Swinderen ◽  
Naotsugu Tsuchiya

AbstractThe physical basis of consciousness remains one of the most elusive concepts in current science. One influential conjecture is that consciousness is to do with some form of causality, measurable through information. The integrated information theory of consciousness (IIT) proposes that conscious experience, filled with rich and specific content, corresponds directly to a hierarchically organised, irreducible pattern of causal interactions; i.e. an integrated informational structure among elements of a system. Here, we tested this conjecture in a simple biological system (fruit flies), estimating the information structure of the system during wakefulness and general anesthesia. We found that causal interactions among populations of neurons during wakefulness collapsed to isolated clusters of interactions during anesthesia. We used classification analysis to quantify the accuracy of discrimination between wakeful and anesthetised states, and found that informational structures inferred conscious states with greater accuracy than a scalar summary of the structure, a measure which is generally championed as the main measure of IIT. Spatially, we found that the information structures collapsed rather uniformly across the fly brain. Our results speak to the potential utility of the novel concept of an “informational structure” as a measure for level of consciousness, above and beyond simple scalar values.Author summaryThe physical basis of consciousness remains elusive. Efforts to measure consciousness have generally been restricted to simple, scalar quantities which summarise the complexity of a system, inspired by integrated information theory, which links a multi-dimensional, informational structure to the contents of experience in a system. Due to the complexity of the definition of the structure, assessment of its utility as a measure of conscious arousal in a system has largely been ignored. In this manuscript we evaluate the utility of such an information structure in measuring the level of consciousness in the fruit fly. Our results indicate that this structure can be more informative about the level of consciousness in a system than even the scalar summary proposed by the theory itself. These results may push consciousness research towards the notion of multi-dimensional informational structures, instead of traditional summaries.


2019 ◽  
Author(s):  
Adam Safron

The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement loopy message passing (cf. turbo-codes) over predictive (autoencoding) networks, so generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, so affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, so enabling inferential synergy.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Wiktor Rorot

Abstract The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience—a Minimal Unifying Model of consciousness.


2016 ◽  
Author(s):  
Andrew M. Haun ◽  
Masafumi Oizumi ◽  
Christopher K Kovach ◽  
Hiroto Kawasaki ◽  
Hiroyuki Oya ◽  
...  

Integrated information theory postulates that the particular way stimuli appear when we consciously experience them arises from integrated information relationships across neural populations. We investigated if such equivalence holds by testing if similar/different percepts map onto similar/different information structures. We computed integrated information structure from intracranial EEGs recorded in 6 neurosurgical patients who had electrodes implanted over posterior cortices. During recordings, we dissociated their subjective percepts from physical inputs in three distinct paradigms (passive viewing, continuous flash suppression and backward masking). Unsupervised classification showed that integrated information within stimulus-selective cortical regions classified visual experiences with significant accuracy (peaking on average around 64% classification accuracy). Classification by other relevant information theoretic measures such as mutual information and entropy was consistently poorer (56% and 54% accuracy). The findings argue that concepts from integrated information theory are empirically testable, promising a potential link between conscious experience and informational structures.


Author(s):  
Adam Safron

The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.


Sign in / Sign up

Export Citation Format

Share Document