scholarly journals Strengthened beliefs under psychedelics (SEBUS)? A Commentary on “REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics”

2020 ◽  
Author(s):  
Adam Safron

In introducing a model of “relaxed beliefs under psychedelics” (REBUS), Carhart-Harris and Friston (2019) have presented a compelling account of the effects of psychedelics on brain and mind. This model is contextualized within the Free Energy Principle (Friston et al., 2006; Friston, 2010), which may represent the first unified paradigm in the mind and life sciences. By this view, mental systems adaptively regulate their actions and interactions with the world via predictive models, whose dynamics are governed by a singular objective of minimizing prediction-error, or “free energy.” According to REBUS, psychedelics flatten the depth of free energy landscapes, or the differential attracting forces associated with various (Bayesian) beliefs, so promoting flexibility in inference and learning. Here, I would like to propose an alternative account of the effects of psychedelics that is in many ways compatible with REBUS, albeit with some important differences. Based on considerations of the distributions of 5-HT2a receptors within cortical laminae and canonical microcircuits for predictive coding, I propose that 5-HT2a agonism may also involve a strengthening of beliefs, particularly at intermediate levels of abstraction associated with conscious experience (Safron, 2020).

2019 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Thinking Through Other Minds (TTOM) creatively situates the free energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking to becoming, we suggest complementing such an account by focusing on the empirical, computational and conceptual investigation of the multiscale dynamics of social interaction.


2019 ◽  
Author(s):  
Beren Millidge

This paper combines the active inference formulation of action (Friston, 2009) with hierarchical predictive coding models (Friston, 2003) to provide a proof-of-concept implementation of an active inference agent able to solve a common reinforcement learning baseline -- the cart-pole environment in OpenAI gym. It demonstrates empirically that predictive coding and active inference approaches can be successfully scaled up to tasks more challenging than the mountain car (Friston 2009, 2012). We show that hierarchical predictive coding models can be learned from scratch during the task, and can successfully drive action selection via active inference. To our knowledge, it is the first implemented active inference agent to combine active inference with a hierarchical predictive coding perceptual model. We also provide a tutorial walk-through of the free-energy principle, hierarchical predictive coding, and active inference, including an in-depth derivation of our agent.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 60
Author(s):  
Jonathan Mason

Over recent decades several mathematical theories of consciousness have been put forward including Karl Friston’s Free Energy Principle and Giulio Tononi’s Integrated Information Theory. In this article we further investigate theory based on Expected Float Entropy (EFE) minimisation which has been around since 2012. EFE involves a version of Shannon Entropy parameterised by relationships. It turns out that, for systems with bias due to learning, certain choices for the relationship parameters are isolated since giving much lower EFE values than others and, hence, the system defines relationships. It is proposed that, in the context of all these relationships, a brain state acquires meaning in the form of the relational content of the associated experience. EFE minimisation is itself an association learning process and its effectiveness as such is tested in this article. The theory and results are consistent with the proposition of there being a close connection between association learning processes and the emergence of consciousness. Such a theory may explain how the brain defines the content of consciousness up to relationship isomorphism.


2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.


2009 ◽  
Vol 364 (1521) ◽  
pp. 1211-1221 ◽  
Author(s):  
Karl Friston ◽  
Stefan Kiebel

This paper considers prediction and perceptual categorization as an inference problem that is solved by the brain. We assume that the brain models the world as a hierarchy or cascade of dynamical systems that encode causal structure in the sensorium. Perception is equated with the optimization or inversion of these internal models, to explain sensory data. Given a model of how sensory data are generated, we can invoke a generic approach to model inversion, based on a free energy bound on the model's evidence. The ensuing free-energy formulation furnishes equations that prescribe the process of recognition, i.e. the dynamics of neuronal activity that represent the causes of sensory input. Here, we focus on a very general model, whose hierarchical and dynamical structure enables simulated brains to recognize and predict trajectories or sequences of sensory states. We first review hierarchical dynamical models and their inversion. We then show that the brain has the necessary infrastructure to implement this inversion and illustrate this point using synthetic birds that can recognize and categorize birdsongs.


2020 ◽  
Vol 43 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Abstract Thinking through other minds creatively situates the free-energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking-through to becoming-with, we suggest complementing such an account by focusing on the empirical, computational, and conceptual investigation of the multiscale dynamics of social interaction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Georg Northoff ◽  
Andrea Scalabrini

What kind of neuroscience does psychoanalysis require? At his time, Freud in his “Project for a Scientific Psychology” searched for a model of the brain that could relate to incorporate the psyche’s topography and dynamic. Current neuropsychoanalysis builds on specific functions as investigated in Affective and Cognitive (and Social) Neuroscience including embodied approaches. The brain’s various functions are often converged with prediction as operationalized in predictive coding (PC) and free energy principle (FEP) which, recently, have been conceived as core for a “New Project for Scientific Psychology.” We propose to search for a yet more comprehensive and holistic neuroscience that focuses primarily on its topography and dynamic analogous to Freud’s model of the psyche. This leads us to what we describe as “Spatiotemporal Neuroscience” that focuses on the spatial topography and temporal dynamic of the brain’s neural activity including how they shape affective, cognitive, and social functions including PC and FEP (first part). That is illustrated by the temporally and spatially nested neural hierarchy of the self in the brain’s neural activity (second and third part). This sets the ground for developing our proposed “Project for a Spatiotemporal Neuroscience,” which complements and extends both Freud’s and Solms’ projects (fourth part) and also carries major practical implications as it lays the ground for a novel form of neuroscientifically informed psychotherapy, namely, “Spatiotemporal Psychotherapy.” In conclusion, “Spatiotemporal Neuroscience” provides an intimate link of brain and psyche by showing topography and dynamic as their shared features, that is, “common currency.”


Author(s):  
Wanja Wiese

This chapter provides an introduction to predictive processing (PP), with a focus on its relation to Bayesian inference and the more general framework provided by Karl Friston’s free-energy principle (FEP). Philosophical implications of PP and FEP are discussed. In particular, it is argued that PP posits genuine representations, and that FEP questions whether the conceptual distinction between action and perception is useful when it comes to understanding their neuro-computational underpinnings. Finally, it is argued that PP supports the view that the mind is to some extent secluded from the external world and that perception is indirect because it is based on genuinely inferential processes.


2006 ◽  
Vol 100 (1-3) ◽  
pp. 70-87 ◽  
Author(s):  
Karl Friston ◽  
James Kilner ◽  
Lee Harrison

Sign in / Sign up

Export Citation Format

Share Document