scholarly journals The Visual Word Form Area natively processes shape sequences: Implications for developmental dyslexia

2019 ◽  
Author(s):  
Carol Whitney ◽  
Paddy Ross ◽  
Zhiheng Zhou ◽  
Lars Strother

The Visual Word Form Area (VWFA) is a cortical region that adapts to support fluent word recognition. Surprisingly, the region of ventrolateral occipitotemporal cortex that becomes VWFA is specialized for processing the motion of inanimate objects that change shape. Such motion is neurally analyzed as a temporal sequence of shape 'snapshots'. We have proposed that the VWFA develops in this region because letter representations are serially activated in occipitotemporal cortex during typical reading acquisition. Therefore, the region that analyzes inanimate shape sequences is recruited to recognize letter sequences. We discuss the implications of this account for developmental dyslexia. In particular, inability to focus attention down to a single letter may preclude the serial letter selection that typically drives VWFA formation. Such a deficit would also interfere with acquisition of cortical letter-phoneme connections. Instead, compensated dyslexics employ the ventromedial object-recognition system for whole-word recognition, and the subcortical procedural system for phonological decoding.

2019 ◽  
Author(s):  
Carol Whitney ◽  
Paddy Ross ◽  
Zhiheng Zhou ◽  
Lars Strother

There is ongoing debate about what characteristics of left ventral occipitotemporal cortex drive development of the Visual Word Form Area (VWFA). We offer a new hypothesis. A summary of occipitotemporal organization indicates that the VWFA falls in a cortical region supporting action analysis, rather than object recognition. We discuss evidence that letters are serially processed in a top-down manner during the initial years of reading acquisition, and propose that this sequential activation of letter representations causes the VWFA to develop in motion-sensitive cortex specialized for processing of non-biological shape sequences. Supporting this hypothesis, a new fMRI analysis identifies a left-lateralized region that responds more strongly to dynamic motion of objects than humans; this region's location (-48, -55, -8) falls almost exactly at the canonical VWFA coordinates (-45, -57, -12).


2019 ◽  
Vol 60 (4) ◽  
pp. 1063 ◽  
Author(s):  
Ana Pina Rodrigues ◽  
José Rebola ◽  
Marcelino Pereira ◽  
Marieke van Asselen ◽  
Miguel Castelo-Branco

2007 ◽  
Vol 19 (10) ◽  
pp. 1584-1594 ◽  
Author(s):  
Martin Kronbichler ◽  
Jürgen Bergmann ◽  
Florian Hutzler ◽  
Wolfgang Staffen ◽  
Alois Mair ◽  
...  

The importance of the left occipitotemporal cortex for visual word processing is highlighted by numerous functional neuroimaging studies, but the precise function of the visual word form area (VWFA) in this brain region is still under debate. The present functional magnetic resonance imaging study varied orthographic familiarity independent from phonological-semantic familiarity by presenting orthographically familiar and orthographically unfamiliar forms (pseudohomophones) of the same words in a phonological lexical decision task. Consistent with orthographic word recognition in the VWFA, we found lower activation for familiar compared with unfamiliar forms, but no difference between pseudohomophones and pseudowords. This orthographic familiarity effect in the VWFA differed from the phonological familiarity effect in left frontal regions, where phonologically unfamiliar pseudowords led to higher activation than phonologically familiar pseudohomophones. We suggest that the VWFA not only computes letter string representations but also hosts word-specific orthographic representations. These representations function as recognition units with the effect that letter strings that readily match with stored representations lead to less activation than letter strings that do not.


2012 ◽  
Vol 24 (5) ◽  
pp. 1104-1112 ◽  
Author(s):  
Albert Kim ◽  
Vicky Lai

We used ERPs to investigate the time course of interactions between lexical semantic and sublexical visual word form processing during word recognition. Participants read sentence-embedded pseudowords that orthographically resembled a contextually supported real word (e.g., “She measured the flour so she could bake a ceke…”) or did not (e.g., “She measured the flour so she could bake a tont…”) along with nonword consonant strings (e.g., “She measured the flour so she could bake a srdt…”). Pseudowords that resembled a contextually supported real word (“ceke”) elicited an enhanced positivity at 130 msec (P130), relative to real words (e.g., “She measured the flour so she could bake a cake…”). Pseudowords that did not resemble a plausible real word (“tont”) enhanced the N170 component, as did nonword consonant strings (“srdt”). The effect pattern shows that the visual word recognition system is, perhaps, counterintuitively, more rapidly sensitive to minor than to flagrant deviations from contextually predicted inputs. The findings are consistent with rapid interactions between lexical and sublexical representations during word recognition, in which rapid lexical access of a contextually supported word (CAKE) provides top–down excitation of form features (“cake”), highlighting the anomaly of an unexpected word “ceke.”


2019 ◽  
Vol 31 (7) ◽  
pp. 1018-1029 ◽  
Author(s):  
Zhiheng Zhou ◽  
Tutis Vilis ◽  
Lars Strother

Reading relies on the rapid visual recognition of words viewed in a wide variety of fonts. We used fMRI to identify neural populations showing reduced fMRI responses to repeated words displayed in different fonts (“font-invariant” repetition suppression). We also identified neural populations showing greater fMRI responses to words repeated in a changing font as compared with words repeated in the same font (“font-sensitive” release from repetition suppression). We observed font-invariant repetition suppression in two anatomically distinct regions of the left occipitotemporal cortex (OT), a “visual word form area” in mid-fusiform cortex, and a more posterior region in the middle occipital gyrus. In contrast, bilateral shape-selective lateral occipital cortex and posterior fusiform showed considerable sensitivity to font changes during the viewing of repeated words. Although the visual word form area and the left middle occipital gyrus showed some evidence of font sensitivity, both regions showed a relatively greater degree of font invariance than font sensitivity. Our results show that the neural mechanisms in the left OT involved in font-invariant word recognition are anatomically distinct from those sensitive to font-related shape changes. We conclude that font-invariant representation of visual word form is instantiated at multiple levels by anatomically distinct neural mechanisms within the left OT.


Author(s):  
Manuel Perea ◽  
Victoria Panadero

The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word’s overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children – this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word’s visual cues, presumably because of poor letter representations.


Author(s):  
Adithya Chandregowda ◽  
Joseph R. Duffy ◽  
Mary M. Machulda ◽  
Val J. Lowe ◽  
Jennifer L. Whitwell ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 186 ◽  
pp. 278-285 ◽  
Author(s):  
Chotiga Pattamadilok ◽  
Samuel Planton ◽  
Mireille Bonnard

2019 ◽  
Author(s):  
Jin Li ◽  
David E. Osher ◽  
Heather A. Hansen ◽  
Zeynep M. Saygin

AbstractWhat determines the functional organization of cortex? One hypothesis is that innate connectivity patterns set up a scaffold upon which functional specialization can later take place. We tested this hypothesis by asking whether the visual word form area (VWFA), an experience-driven region, was already connected to proto language networks in neonates scanned within one week of birth. With resting-state fMRI, we found that neonates showed adult-like functional connectivity, and observed that i) language regions connected more strongly with the putative VWFA than other adjacent ventral visual regions that also show foveal bias, and ii) the VWFA connected more strongly with frontotemporal language regions than with regions adjacent to these language regions. These data suggest that the location of the VWFA is earmarked at birth due to its connectivity with the language network, providing evidence that innate connectivity instructs the later refinement of cortex.


Sign in / Sign up

Export Citation Format

Share Document