scholarly journals Are there jumps in evidence accumulation, and what, if anything, do they reflect psychologically? An analysis of Lévy-Flights models of decision-making

2021 ◽  
Author(s):  
Amir Hosein Hadian Rasanan ◽  
Jamal Amani Rad ◽  
David K. Sewell

According to existing theories of simple decision-making, decisions are initiated by continuously sampling and accumulating perceptual evidence until a threshold value has been reached. Many models, such as the diffusion decision model, assume a noisy accumulation process, described mathematically as a stochastic Wiener process with Gaussian distributed noise. Recently, an alternative account of decision-making has been proposed in the Lévy Flights (LF) model, in which accumulation noise is characterized by a heavy-tailed power-law distribution, controlled by a parameter, α. The LF model produces sudden large “jumps” in evidence ac- cumulation that are not produced by the standard Wiener diffusion model, which some have argued provide better fits to data. It remains unclear, however, whether jumps in evidence accumulation have any real psychological meaning. Here, we investigate the conjecture by Voss et al. (2019) that jumps might reflect sudden shifts in the source of evidence people rely on to make decisions. We reason that if jumps are psychologically real, we should observe systematic reductions in jumps as people become more practiced with a task (i.e., as people converge on a stable decision strategy with experience). We fitted four versions of the LF model to behavioral data from a study by Evans and Brown (2017), using a five-layer deep inference neural network for parameter estimation. The analysis revealed systematic reductions in jumps as a function of practice, such that the LF model more closely approximated the standard Wiener model over time. This trend could not be attributed to other sources of parameter variability, speaking against the possibility of trade-offs with other model parameters. Our analysis suggests that jumps in the LF model might be capturing strategy instability exhibited by relatively inexpe- rienced observers early on in task performance. We conclude that further investigation of a potential psychological interpretation of jumps in evidence accumulation is warranted.

2019 ◽  
Vol 20 (2) ◽  
pp. 295
Author(s):  
Luiz Otávio Rodrigues Alves Sereno ◽  
José Luiz Acebal

Among many structures in the cells of living beings, there are proteins called transcription factors (TF) that are responsible to inhibit or promote the transcription of the DNA. To accomplish their function, the transcription factors perform aleatory searches around the cytoplasm (for prokaryotic cells) and along the DNA chain as well for specific targets located in the DNA. Its movement fits into the class of anomalous Brownian. The efficiency in TFs search has implications in the cellular copy and in protection against viruses, hence the knowledge of the mechanism is of great interest. In the present work, we study the searching process of the TFs by simulating the anomalous Brownian motion through the cytoplasm and DNA chain by means of Levy flights through a lattice model and through a  free grid model. The final distribution of positions of the TF are obtained. The search efficiency is investigated in terms of the model parameters.


2020 ◽  
Vol 497 (3) ◽  
pp. 3694-3712
Author(s):  
Viraj Manwadkar ◽  
Alessandro A Trani ◽  
Nathan W C Leigh

ABSTRACT We study chaos and Lévy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $\mathcal {S}$ and the Lévy flight (LF) index $\mathcal {L}$, that are derived from the Agekyan–Anosova maps and homology radius $R_{\mathcal {H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Lévy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Lévy flight interactions follow a power-law distribution. Lévy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Lévy flight interactions. We propose a new physically motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Lévy flight interactions. We discuss ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.


2021 ◽  
Vol 24 (1) ◽  
pp. 137-167
Author(s):  
Gianni Pagnini ◽  
Silvia Vitali

Abstract We study Markovian continuos-time random walk models for Lévy flights and we show an example in which the convergence to stable densities is not guaranteed when jumps follow a bi-modal power-law distribution that is equal to zero in zero. The significance of this result is two-fold: i) with regard to the probabilistic derivation of the fractional diffusion equation and also ii) with regard to the concept of site fidelity in the framework of Lévy-like motion for wild animals.


2021 ◽  
pp. 1-18
Author(s):  
ShuoYan Chou ◽  
Truong ThiThuy Duong ◽  
Nguyen Xuan Thao

Energy plays a central part in economic development, yet alongside fossil fuels bring vast environmental impact. In recent years, renewable energy has gradually become a viable source for clean energy to alleviate and decouple with a negative connotation. Different types of renewable energy are not without trade-offs beyond costs and performance. Multiple-criteria decision-making (MCDM) has become one of the most prominent tools in making decisions with multiple conflicting criteria existing in many complex real-world problems. Information obtained for decision making may be ambiguous or uncertain. Neutrosophic is an extension of fuzzy set types with three membership functions: truth membership function, falsity membership function and indeterminacy membership function. It is a useful tool when dealing with uncertainty issues. Entropy measures the uncertainty of information under neutrosophic circumstances which can be used to identify the weights of criteria in MCDM model. Meanwhile, the dissimilarity measure is useful in dealing with the ranking of alternatives in term of distance. This article proposes to build a new entropy and dissimilarity measure as well as to construct a novel MCDM model based on them to improve the inclusiveness of the perspectives for decision making. In this paper, we also give out a case study of using this model through the process of a renewable energy selection scenario in Taiwan performed and assessed.


Urban Science ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Janette Hartz-Karp ◽  
Dora Marinova

This article expands the evidence about integrative thinking by analyzing two case studies that applied the collaborative decision-making method of deliberative democracy which encourages representative, deliberative and influential public participation. The four-year case studies took place in Western Australia, (1) in the capital city Perth and surrounds, and (2) in the city-region of Greater Geraldton. Both aimed at resolving complex and wicked urban sustainability challenges as they arose. The analysis suggests that a new way of thinking, namely integrative thinking, emerged during the deliberations to produce operative outcomes for decision-makers. Building on theory and research demonstrating that deliberative designs lead to improved reasoning about complex issues, the two case studies show that through discourse based on deliberative norms, participants developed different mindsets, remaining open-minded, intuitive and representative of ordinary people’s basic common sense. This spontaneous appearance of integrative thinking enabled sound decision-making about complex and wicked sustainability-related urban issues. In both case studies, the participants exhibited all characteristics of integrative thinking to produce outcomes for decision-makers: salience—grasping the problems’ multiple aspects; causality—identifying multiple sources of impacts; sequencing—keeping the whole in view while focusing on specific aspects; and resolution—discovering novel ways that avoided bad choice trade-offs.


Sign in / Sign up

Export Citation Format

Share Document