scholarly journals Remote research on locomotion interfaces for virtual reality: Replication of a lab-based study on teleporting interfaces

2021 ◽  
Author(s):  
Jonathan Kelly ◽  
Melynda Hoover ◽  
Taylor Doty ◽  
Alex Renner ◽  
Lucia Cherep ◽  
...  

The wide availability of consumer-oriented virtual reality (VR) equipment has enabled researchers to recruit existing VR owners to participate remotely using their own equipment. Yet, there are many differences between lab environments and home environments, as well as differences between participant samples recruited for lab studies and remote studies. This paper replicates a lab-based experiment on VR locomotion interfaces using a remote sample. Participants completed a triangle-completion task (travel two path legs, then point to the path origin) using their own VR equipment in a remote, unsupervised setting. Locomotion was accomplished using two versions of the teleporting interface varying in availability of rotational self-motion cues. The size of the traveled path and the size of the surrounding virtual environment were also manipulated. Results from remote participants largely mirrored lab results, with overall better performance when rotational self-motion cues were available. Some differences also occurred, including a tendency for remote participants to rely less on nearby landmarks, perhaps due to increased competence with using the teleporting interface to update self-location. This replication study provides insight for VR researchers on aspects of lab studies that may or may not replicate remotely.

2019 ◽  
Author(s):  
Lucia Cherep ◽  
Alex Lim ◽  
Jonathan Kelly ◽  
Alec Ostrander ◽  
Stephen B. Gilbert

Teleporting is a popular interface to allow virtual reality users to explore environments that are larger than the available walking space. When teleporting, the user positions a marker in the virtual environment and is instantly transported without any self-motion cues. Five experiments were designed to evaluate the spatial cognitive consequences of teleporting, and to identify environmental cues that could mitigate those costs. Participants performed a triangle completion task by traversing two outbound path legs before pointing to the unmarked path origin. Locomotion was accomplished via walking or two common implementations of the teleporting interface distinguished by the concordance between movement of the body and movement through the virtual environment. In the partially concordant teleporting interface, participants teleported to translate (change position) but turned the body to rotate. In the discordant teleporting interface, participants teleported to translate and rotate. Across all 5 experiments, discordant teleporting produced larger errors than partially concordant teleporting which produced larger errors than walking, reflecting the importance of translational and rotational self-motion cues. Furthermore, geometric boundaries (room walls or a fence) were necessary to mitigate the spatial cognitive costs associated with teleporting, and landmarks were helpful only in the context of a geometric boundary.


2021 ◽  
Author(s):  
Jonathan Kelly ◽  
Stephen B. Gilbert

The proliferation of locomotion interfaces for virtual reality necessitates a framework for predicting and evaluating navigational success. Spatial updating---the process of mentally updating one's self-location during locomotion---is a core component of navigation, is easy to measure, and is sensitive to common elements of locomotion interfaces. This paper highlights three factors that influence spatial updating: body-based self-motion cues, environmental cues, and characteristics of the individual. The concordance framework, which characterizes locomotion interfaces based on agreement between body movement and movement through the environment, serves as a useful starting point for understanding the effectiveness of locomotion interfaces for enabling accurate navigation.


Perception ◽  
10.1068/p3311 ◽  
2002 ◽  
Vol 31 (3) ◽  
pp. 349-374 ◽  
Author(s):  
Melissa J Kearns ◽  
William H Warren ◽  
Andrew P Duchon ◽  
Michael J Tarr

We examined the roles of information from optic flow and body senses (eg vestibular and proprioceptive information) for path integration, using a triangle completion task in a virtual environment. In two experiments, the contribution of optic flow was isolated by using a joystick control. Five circular arenas were used for testing: (B) both floor and wall texture; (F) floor texture only, reducing information for rotation; (W) wall texture only, reducing information for translation; (N) a no texture control condition; and (P) an array of posts. The results indicate that humans can use optic flow for path integration and are differentially influenced by rotational and translational flow. In a third experiment, participants actively walked in arenas B, F, and N, so body senses were also available. Performance shifted from a pattern of underturning to overturning and exhibited decreased variability, similar responses with and without optic flow, and no attrition. The results indicate that path integration can be performed by integrating optic flow, but when information from body senses is available it appears to dominate.


2006 ◽  
Author(s):  
Ken Graap ◽  
Barbara O. Rothbaum ◽  
Page Anderson ◽  
Elana Zimand ◽  
Larry Hodges ◽  
...  

Author(s):  
Alex F. Lim ◽  
Jonathan W. Kelly ◽  
Nathan C. Sepich ◽  
Lucia A. Cherep ◽  
Grace C. Freed ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
pp. 15
Author(s):  
Jingyi Li ◽  
Ceenu George ◽  
Andrea Ngao ◽  
Kai Holländer ◽  
Stefan Mayer ◽  
...  

Ubiquitous technology lets us work in flexible and decentralised ways. Passengers can already use travel time to be productive, and we envision even better performance and experience in vehicles with emerging technologies, such as virtual reality (VR) headsets. However, the confined physical space constrains interactions while the virtual space may be conceptually borderless. We therefore conducted a VR study (N = 33) to examine the influence of physical restraints and virtual working environments on performance, presence, and the feeling of safety. Our findings show that virtual borders make passengers touch the car interior less, while performance and presence are comparable across conditions. Although passengers prefer a secluded and unlimited virtual environment (nature), they are more productive in a shared and limited one (office). We further discuss choices for virtual borders and environments, social experience, and safety responsiveness. Our work highlights opportunities and challenges for future research and design of rear-seat VR interaction.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 397
Author(s):  
Qimeng Zhang ◽  
Ji-Su Ban ◽  
Mingyu Kim ◽  
Hae Won Byun ◽  
Chang-Hun Kim

We propose a low-asymmetry interface to improve the presence of non-head-mounted-display (non-HMD) users in shared virtual reality (VR) experiences with HMD users. The low-asymmetry interface ensures that the HMD and non-HMD users’ perception of the VR environment is almost similar. That is, the point-of-view asymmetry and behavior asymmetry between HMD and non-HMD users are reduced. Our system comprises a portable mobile device as a visual display to provide a changing PoV for the non-HMD user and a walking simulator as an in-place walking detection sensor to enable the same level of realistic and unrestricted physical-walking-based locomotion for all users. Because this allows non-HMD users to experience the same level of visualization and free movement as HMD users, both of them can engage as the main actors in movement scenarios. Our user study revealed that the low-asymmetry interface enables non-HMD users to feel a presence similar to that of the HMD users when performing equivalent locomotion tasks in a virtual environment. Furthermore, our system can enable one HMD user and multiple non-HMD users to participate together in a virtual world; moreover, our experiments show that the non-HMD user satisfaction increases with the number of non-HMD participants owing to increased presence and enjoyment.


2015 ◽  
Vol 772 ◽  
pp. 585-590
Author(s):  
Florin Gîrbacia ◽  
Silviu Butnariu ◽  
Daniel Voinea ◽  
Bogdan Tzolea ◽  
Teodora Gîrbacia ◽  
...  

Surgical robots for biopsy procedure require pre-operative planning of trajectories prior to be used for needle guiding procedures. Virtual Reality (VR) technologies allow to simulate robotic biopsy procedure and to generate accurate needle trajectories that avoid vital organs. The paper presents a serial robot which can be used for biopsy procedure and a needle trajectory planning software based on VR technologies. A virtual environment has been modelled and simulations for robotic-assisted biopsy of the prostate have been performed.


2006 ◽  
Vol 3 (3) ◽  
pp. 194-216 ◽  
Author(s):  
Bernhard E. Riecke ◽  
Jörg Schulte-Pelkum ◽  
Marios N. Avraamides ◽  
Markus Von Der Heyde ◽  
Heinrich H. Bülthoff

Sign in / Sign up

Export Citation Format

Share Document