scholarly journals A Model of Causal and Probabilistic Reasoning in Frame Semantics

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum mechanics admits a “linguistic interpretation” if one equates preliminary any quantum state of some whether quantum entity or word, i.e. a wave function interpretable as an element of the separable complex Hilbert space. All possible Feynman pathways can link to each other any two semantic units such as words or term in any theory. Then, the causal reasoning would correspond to the case of classical mechanics (a single trajectory, in which any next point is causally conditioned), and the probabilistic reasoning, to the case of quantum mechanics (many Feynman trajectories). Frame semantics turns out to be the natural counterpart of that linguistic interpretation of quantum mechanics.

Author(s):  
G. Cassinelli ◽  
P. Lahti

We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue ‘Second quantum revolution: foundational questions’.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
So Katagiri

Abstract We investigate measurement theory in classical mechanics in the formulation of classical mechanics by Koopman and von Neumann (KvN), which uses Hilbert space. We show a difference between classical and quantum mechanics in the “relative interpretation” of the state of the target of measurement and the state of the measurement device. We also derive the uncertainty relation in classical mechanics.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Sebastián Ardenghi ◽  
Olimpia Lombardi

Modal interpretations are non-collapse interpretations, where the quantum state of a system describes its possible properties rather than the properties that it actually possesses. Among them, the atomic modal interpretation (AMI) assumes the existence of a special set of disjoint systems that fixes the preferred factorization of the Hilbert space. The aim of this paper is to analyze the relationship between the AMI and our recently presented modal-hamiltonian interpretation (MHI), by showing that the MHI can be viewed as a kind of “atomic” interpretation in two different senses. On the one hand, the MHI provides a precise criterion for the preferred factorization of the Hilbert space into factors representing elemental systems. On the other hand, the MHI identifies the atomic systems that represent elemental particles on the basis of the Galilei group. Finally, we will show that the MHI also introduces a decomposition of the Hilbert space of any elemental system, which determines with precision what observables acquire definite actual values.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of matter-energy.” Dr Horton, his collaborator in the novel replies: “If the universe consists of energy and information, then the Trigger somehow alters the information envelope of certain substances –“.“Alters it, scrambles it, overwhelms it, destabilizes it” Brohier adds.There is a scientific debate whether or how far chemistry is fundamentally reducible to quantum mechanics. Nevertheless, the fact that many essential chemical properties and reactions are at least partly representable in terms of quantum mechanics is doubtless. For the quantum mechanics itself has been reformulated as a theory of a special kind of information, quantum information, chemistry might be in turn interpreted in the same terms.Wave function, the fundamental concept of quantum mechanics, can be equivalently defined as a series of qubits, eventually infinite. A qubit, being defined as the normed superposition of the two orthogonal subspaces of the complex Hilbert space, can be interpreted as a generalization of the standard bit of information as to infinite sets or series. All “forces” in the Standard model, which are furthermore essential for chemical transformations, are groups [U(1),SU(2),SU(3)] of the transformations of the complex Hilbert space and thus, of series of qubits.One can suggest that any chemical substances and changes are fundamentally representable as quantum information and its transformations. If entanglement is interpreted as a physical field, though any group above seems to be unattachable to it, it might be identified as the “Triger field”. It might cause a direct transformation of any chemical substance by from a remote distance. Is this possible in principle?


Author(s):  
Yehuda Roth

n our previous paper, we showed that the so-called quantum entanglement also exists in classical mechanics. The inability to measure this classical entanglement was rationalized with the definition of a classical observer which collapses all entanglement into distinguishable states. It was shown that evidence for this primary coherence is Newton’s third law. However, in reformulating a "classical entanglement theory" we assumed the existence of Newton’s second law as an operator form where a force operator was introduced through a Hilbert space of force states. In this paper, we derive all related physical quantities and laws from basic quantum principles. We not only define a force operator but also derive the classical mechanic's laws and prove the necessity of entanglement to obtain Newton’s third law.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this section we introduce the framework of quantum mechanics as it pertains to the types of systems we will consider for quantum computing. Here we also introduce the notion of a quantum bit or ‘qubit’, which is a fundamental concept for quantum computing. At the beginning of the twentieth century, it was believed by most that the laws of Newton and Maxwell were the correct laws of physics. By the 1930s, however, it had become apparent that these classical theories faced serious problems in trying to account for the observed results of certain experiments. As a result, a new mathematical framework for physics called quantum mechanics was formulated, and new theories of physics called quantum physics were developed in this framework. Quantum physics includes the physical theories of quantum electrodynamics and quantum field theory, but we do not need to know these physical theories in order to learn about quantum information. Quantum information is the result of reformulating information theory in this quantum framework. We saw in Section 1.6 an example of a two-state quantum system: a photon that is constrained to follow one of two distinguishable paths. We identified the two distinguishable paths with the 2-dimensional basis vectors and then noted that a general ‘path state’ of the photon can be described by a complex vector with |α0|2 +|α1|2 = 1. This simple example captures the essence of the first postulate, which tells us how physical states are represented in quantum mechanics. Depending on the degree of freedom (i.e. the type of state) of the system being considered, H may be infinite-dimensional. For example, if the state refers to the position of a particle that is free to occupy any point in some region of space, the associated Hilbert space is usually taken to be a continuous (and thus infinite-dimensional) space. It is worth noting that in practice, with finite resources, we cannot distinguish a continuous state space from one with a discrete state space having a sufficiently small minimum spacing between adjacent locations. For describing realistic models of quantum computation, we will typically only be interested in degrees of freedom for which the state is described by a vector in a finite-dimensional (complex) Hilbert space.


2012 ◽  
Vol 09 (02) ◽  
pp. 1260026 ◽  
Author(s):  
L. J. BOYA

Geometry and Physics developed independently, until the past twentieth century, where physicists realized geometry is rather flexible and can adapt itself to the needs and characteristics of modern physics. Besides the use of Riemannian manifolds to describe General Relativity, classical mechanics encounters symplectic geometry, not to speak of the bundle connection ingredient of modern gauge theories; even Quantum Mechanics, after the initial Hilbert space period, is seeking nowadays to adapt itself better to a geometrical interpretation, by imperatives of the path integral description and also to incorporate more clearly the symplectic aspects of its classical antecedent.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
U. Klein

It is shown that Schrödinger's equation may be derived from three postulates. The first is a kind of statistical metamorphosis of classical mechanics, a set of two relations which are obtained from the canonical equations of particle mechanics by replacing all observables by statistical averages. The second is a local conservation law of probability with a probability current which takes the form of a gradient. The third is a principle of maximal disorder as realized by the requirement of minimal Fisher information. The rule for calculating expectation values is obtained from a fourth postulate, the requirement of energy conservation in the mean. The fact that all these basic relations of quantum theory may be derived from premises which are statistical in character is interpreted as a strong argument in favor of the statistical interpretation of quantum mechanics. The structures of quantum theory and classical statistical theories are compared, and some fundamental differences are identified.


1997 ◽  
Vol 09 (01) ◽  
pp. 29-57 ◽  
Author(s):  
N. P. Landsman

The common structure of the space of pure states ℘ of a classical or a quantum mechanical system is that of a Poisson space with a transition probability. This is a topological space equipped with a Poisson structure, as well as with a function p:℘×℘→[0,1], with certain properties. The Poisson structure is connected with the transition probabilities through unitarity (in a specific formulation intrinsic to the given context). In classical mechanics, where p(ρ,σ)=δρσ, unitarity poses no restriction on the Poisson structure. Quantum mechanics is characterized by a specific (complex Hilbert space) form of p, and by the property that the irreducible components of ℘ as a transition probability space coincide with the symplectic leaves of ℘ as a Poisson space. In conjunction, these stipulations determine the Poisson structure of quantum mechanics up to a multiplicative constant (identified with Planck's constant). Motivated by E. M. Alfsen, H. Hanche-Olsen and F. W. Shultz (Acta Math.144 (1980) 267–305) and F.W. Shultz (Commun. Math. Phys.82 (1982) 497–509), we give axioms guaranteeing that ℘ is the space of pure states of a unital C*-algebra. We give an explicit construction of this algebra from ℘.


Sign in / Sign up

Export Citation Format

Share Document