scholarly journals Effects of ipsilateral and contralateral fatigue and muscle occlusion on the complexity of knee extensor torque output in humans

2018 ◽  
Author(s):  
Jamie Pethick ◽  
Samantha Lee Winter ◽  
Mark Burnley

To determine whether the fatigue-induced loss of torque complexity could be accounted for by central or peripheral factors, nine healthy participants performed four experimental trials involving intermittent isometric contractions of the knee extensors at 50% of the maximal voluntary contraction (MVC) torque. These trials involved: 1) two bouts of contractions to failure using the right leg separated by 3 min recovery (ISP); 2) the same protocol but with cuff occlusion during the 3-min recovery (ISP-OCC); 3) contractions of the left leg to failure, followed 1 min later by contractions of the right leg to failure (CONT); and 4) the same protocol but with cuff occlusion applied to the left leg throughout both the recovery period and right leg contractions (CONT-OCC). Supramaximal electrical stimulation during MVCs was used to determine the degree of central and peripheral fatigue, whilst complexity was determined using Approximate Entropy (ApEn) and Detrended Fluctuation Analysis alpha-exponent (DFA alpha). Neuromuscular fatigue was consistently associated with a loss of torque complexity in all conditions (e.g., ISP bout 1 ApEn from [mean +/- SD]: 0.46 +/- 0.14 to 0.12 +/- 0.06 [P < 0.001]). In ISP-OCC, occlusion abolished the recovery from fatigue and torque complexity remained at the values observed at task failure in the preceding bout (IPS-OCC bout 2, first minute: 0.14 +/- 0.03, P < 0.001). Prior contralateral contractions had no effect on torque complexity. These results demonstrate that peripheral fatigue plays a dominant role in the loss of torque complexity.

2018 ◽  
Author(s):  
Jamie Pethick ◽  
Mark Burnley ◽  
Samantha Lee Winter

The temporal structure, or complexity, of muscle torque output reflects the adaptability of motor control to changes in task demands. This complexity is reduced by neuromuscular fatigue during intermittent isometric contractions. We tested the hypothesis that sustained fatiguing isometric contractions would result in a similar loss of complexity. To that end, nine healthy participants performed, on separate days, sustained isometric contractions of the knee extensors at 20% MVC to task failure and at 100% MVC for 60 seconds. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified by calculating approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. Fatigue reduced the complexity of both submaximal (ApEn from 1.02 ± 0.06 to 0.41 ± 0.04, P < 0.05) and maximal contractions (ApEn from 0.34 ± 0.05 to 0.26 ± 0.04, P < 0.05; DFA α from 1.41 ± 0.04 to 1.52 ± 0.03, P < 0.05). The losses of complexity were accompanied by significant global, central and peripheral fatigue (all P < 0.05). These results demonstrate that a fatigue-induced loss of torque complexity is evident not only during fatiguing intermittent isometric contractions, but also during sustained fatiguing contractions.


2016 ◽  
Vol 310 (11) ◽  
pp. R1144-R1153 ◽  
Author(s):  
Jamie Pethick ◽  
Samantha L. Winter ◽  
Mark Burnley

The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1–S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = −0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI −0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = −0.72, −0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT.


2018 ◽  
Author(s):  
Jamie Pethick ◽  
Katherine Whiteaway ◽  
Samantha Lee Winter ◽  
Mark Burnley

Neuromuscular fatigue reduces the complexity of muscle torque output. Exercise-induced muscle damage reduces muscle torque output for considerably longer than high-intensity fatiguing contractions. We therefore hypothesized that muscle damaging eccentric exercise would lead to a persistent decrease in torque complexity, whereas fatiguing exercise would not. Ten healthy participants performed five isometric contractions (6 s contraction, 4 s rest) at 50% maximal voluntary contraction (MVC) before, immediately after, 10, 30 and 60 minutes, and 24 hours after eccentric (muscle damaging) and isometric (fatiguing) exercise. Further measures were taken 48 hours and one week after eccentric exercise. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA). Global, central and peripheral perturbations were quantified using MVCs with femoral nerve stimulation. Complexity decreased following both eccentric (ApEn, mean (SD), from 0.39 (0.10) to 0.20 (0.12), P < 0.001) and isometric exercise (from 0.41 (0.13) to 0.09 (0.04); P < 0.001). After eccentric exercise ApEn and DFA α required 24 hours to recover to baseline levels, compared to only 10 minutes following isometric exercise. MVC torque remained reduced (from 233.6 (74.2) N.m to 187.5 (64.7) N.m) and submaximal EMG amplitude increased (from 51.2 (6.9)% to 68.4 (11.3)%) 48 hours after eccentric exercise, with such changes only evident up to 60 minutes following isometric exercise (MVC torque, from 246.1 (77.2) to 217.9 (71.8) N.m; submaximal EMG from 52.9 (6.4)% to 66.2 (9.0)%). The prolonged depression in maximal muscle torque output is therefore accompanied by a reduction in torque complexity, suggesting that eccentric exercise diminishes motor control as well as muscle force-generating capacity.


Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 264-282
Author(s):  
Rihab Borji ◽  
Firas Zghal ◽  
Nidhal Zarrouk ◽  
Sonia Sahli ◽  
Haithem Rebai

The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.


1990 ◽  
Vol 69 (6) ◽  
pp. 2215-2221 ◽  
Author(s):  
G. A. Dudley ◽  
R. T. Harris ◽  
M. R. Duvoisin ◽  
B. M. Hather ◽  
P. Buchanan

The speed-torque relationship of the right knee extensor muscle group was investigated in eight untrained subjects (28 +/- 2 yr old). Torque was measured at a specific knee angle during isokinetic concentric or eccentric actions at nine angular velocities (0.17-3.66 rad/s) and during isometric actions. Activation was by "maximal" voluntary effort or by transcutaneous tetanic electrical stimulation that induced an isometric torque equal to 60% (STIM 1) or 45% (STIM 2) of the voluntary isometric value. Torque increased (P less than 0.05) to 1.4 times isometric as the speed of eccentric actions increased to 1.57 rad/s for STIM 1 and STIM 2. Thereafter, increases in eccentric speed did not further increase torque. Torque did not increase (P greater than 0.05) above isometric for voluntary eccentric actions. As the speed of concentric actions increased from 0.00 to 3.66 rad/s, torque decreased (P less than 0.05) more (P less than 0.05) for both STIM 1 and STIM 2 (two-thirds) than for voluntary activation (one-half). As a result of these responses, torque changed three times as much (P less than 0.05) across speeds of concentric and eccentric actions with artificial (3.4-fold) than voluntary (1.1-fold) activation. The results indicate that with artificial activation the normalized speed-torque relationship of the knee extensors in situ is remarkably similar to that of isolated muscle. The relationship for voluntary activation, in contrast, suggests that the ability of the central nervous system to activate the knee extensors during maximal efforts depends on the speed and type of muscle action performed.


2021 ◽  
Author(s):  
Nicholas Clark ◽  
Jamie Pethick

Context: Motor pathways include upper motor-neurons from the cerebrum and brainstem and lower motor-neurons from the spinal cord. Together, these physiological components are effectors of knee neuromuscular control. Because multiple components are involved, each with an output that is asynchronous to the others, ‘whole-system’ output is characterized by irregular temporal behavior and signal fluctuations. The irregular temporal behavior of physiological signals is analyzed using ‘complexity’. Complexity-based measures reflect the ability to adapt motor output rapidly and accurately in response to external perturbations and provide physiological information missed by magnitude-based (variability) measures.Objective: To characterize side-to-side symmetry of knee neuromuscular control (sub-maximal isometric knee extension constant-force task) using variability (coefficient of variation [CV%]) and complexity (approximate entropy [ApEn], detrended fluctuation analysis [DFA α]) measures.Design: Cross-sectional.Setting: Laboratory.Patients or Other Participants: Sixteen (male/female n=11/5; age 24.0±5.3yr; height 1.74±0.08m; body-mass 68.3±11.1kg).Main Outcome Measure(s): Right/left and dominant/nondominant group-level (t-test) and individual-level (absolute-asymmetry [%]) comparisons. A limb-symmetry-index was calculated for each variable and clinically-significant absolute-asymmetry defined (&gt;15%). Clinically-significant absolute-asymmetry prevalence (%) was computed for each variable.Results: The only significant side-to-side difference was for right/left DFA α (P=.000). Maximum absolute-asymmetries were (right/left, dominant/nondominant): CV 18.2%, 18.0%; ApEn 34.5%, 32.3%; DFA α 4.9%, 5.0%. Clinically-significant absolute-asymmetry prevalence was (right/left, dominant/nondominant): CV 43.8%, 43.8%; ApEn 62.5%, 50.0%; DFA α 0.0%, 0.0%.Conclusions: Different side-to-side comparison methods yield different findings. Large proportions of participants demonstrated wide ranges of side-to-side absolute-asymmetries. The finding of a significant difference for the right/left DFA α comparison but not for the right/left ApEn comparison suggests that different complexity variables assess different aspects of complexity. Consideration for how side-to-side comparisons are performed (right/left, dominant/nondominant) is required. Approximate entropy and DFA α assess different aspects of complexity and both should be used alongside other traditional magnitude-based measures when studying knee neuromuscular control.


1997 ◽  
Vol 83 (5) ◽  
pp. 1557-1565 ◽  
Author(s):  
N. K. Vøllestad ◽  
I. Sejersted ◽  
E. Saugen

Vøllestad, N. K., I. Sejersted, and E. Saugen. Mechanical behavior of skeletal muscle during intermittent voluntary isometric contractions in humans. J. Appl. Physiol. 83(5): 1557–1565, 1997.—Changes in contractile speed and force-fusion properties were examined during repetitive isometric contractions with the knee extensors at three different target force levels. Seven healthy subjects were studied at target force levels of 30, 45, and 60% of their maximal voluntary contraction (MVC) force. Repeated 6-s contractions followed by 4-s rest were continued until exhaustion. Contractile speed was determined for contractions elicited by electrical stimulation at 1–50 Hz given during exercise and a subsequent 27-min recovery period. Contraction time remained unchanged during exercise and recovery, except for an initial rapid shift in the twitch properties. Half relaxation time (RT1/2) decreased gradually by 20–40% during exercise at 30 and 45% of MVC. In the recovery period, RT1/2 values were not fully restored to preexercise levels. During exercise at 60% MVC, the RT1/2 decreased for twitches and increased for the 50-Hz stimulation. In the recovery period after 60% MVC, RT1/2 values declined toward those seen after the 30 and 45% MVC exercise. The force oscillation amplitude in unfused tetani relative to the mean force increased during exercise at 30 and 45% MVC but remained unaltered during the 60% MVC exercise. This altered force-fusion was closely associated with the changes in RT1/2. The faster relaxation may at least partly explain the increased energy cost of contraction reported previously for the same type of exercise.


2001 ◽  
Vol 91 (3) ◽  
pp. 1055-1060 ◽  
Author(s):  
Lars Nybo ◽  
Bodil Nielsen

The present study investigated the effects of hyperthermia on the contributions of central and peripheral factors to the development of neuromuscular fatigue. Fourteen men exercised at 60% maximal oxygen consumption on a cycle ergometer in hot (40°C; hyperthermia) and thermoneutral (18°C; control) environments. In hyperthermia, the core temperature increased throughout the exercise period and reached a peak value of 40.0 ± 0.1°C (mean ± SE) at exhaustion after 50 ± 3 min of exercise. In control, core temperature stabilized at ∼38.0 ± 0.1°C, and exercise was maintained for 1 h without exhausting the subjects. Immediately after the cycle trials, subjects performed 2 min of sustained maximal voluntary contraction (MVC) either with the exercised legs (knee extension) or with a “nonexercised” muscle group (handgrip). The degree of voluntary activation during sustained maximal knee extensions was assessed by superimposing electrical stimulation (EL) to nervus femoralis. Voluntary knee extensor force was similar during the first 5 s of contraction in hyperthermia and control. Thereafter, force declined in both trials, but the reduction in maximal voluntary force was more pronounced in the hyperthermic trial, and, from 30 to 120 s, the force was significantly lower in hyperthermia compared with control. Calculation of the voluntary activation percentage (MVC/MVC + EL) revealed that the degree of central activation was significantly lower in hyperthermia (54 ± 7%) compared with control (82 ± 6%). In contrast, total force of the knee extensors (MVC + force from EL) was not different in the two trials. Force development during handgrip contraction followed the same pattern of response as was observed for the knee extensors. In conclusion, these data demonstrate that the ability to generate force during a prolonged MVC is attenuated with hyperthermia, and the impaired performance is associated with a reduction in the voluntary activation percentage.


2021 ◽  
Author(s):  
Donguk Jo ◽  
Miriam Goubran ◽  
Martin Bilodeau

The main aim of this study was to determine sex differences in central and peripheral fatigue produced by a sustained isometric exercise of ankle plantar flexors in healthy young adults. Ten males and fourteen females performed a sustained isometric ankle exercise until task failure. Maximal voluntary isometric contraction torque (plantarflexion), voluntary activation level (using the twitch interpolation technique), and twitch contractile properties (twitch peak torque, twitch half relaxation time, and low frequency fatigue index) were measured before, immediately after, and throughout a recovery period (1, 2, 5, and 10 min) following the exercise protocol in order to characterize neuromuscular fatigue. Fatigue had a significant effect (p £ 0.05) on all dependent variables. Other than for the maximal voluntary contraction torque, where males showed a greater fatigue-related decrease than females, males and females showed generally similar changes with fatigue. Altogether, our findings indicate no major differences in central or peripheral fatigue mechanisms between males and females to explain a somewhat greater fatigability in males.


1997 ◽  
Vol 83 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Sandra Webber ◽  
Dean Kriellaars

Webber, Sandra, and Dean Kriellaars. Neuromuscular factors contributing to in vivo eccentric moment generation. J. Appl. Physiol. 83(1): 40–45, 1997.—Muscle series elasticity and its contribution to eccentric moment generation was examined in humans. While subjects [male, n = 30; age 26.3 ± 4.8 (SD) yr; body mass 78.8 ± 13.1 kg] performed an isometric contraction of the knee extensors at 60° of knee flexion, a quick stretch was imposed with a 12°-step displacement at 100°/s. The test was performed at 10 isometric activation levels ranging from 1.7 to 95.2% of maximal voluntary contraction (MVC). A strong linear relationship was observed between the peak imposed eccentric moment derived from quick stretch and the isometric activation level ( y = 1.44 x + 7.08; r = 0.99). This increase in the eccentric moment is consistent with an actomyosin-dependent elasticity located in series with the contractile element of muscle. By extrapolating the linear relationship to 100% MVC, the predicted maximum eccentric moment was found to be 151% MVC, consistent with in vitro data. A maximal voluntary, knee extensor strength test was also performed (5–95°, 3 repetitions, ±50, 100, 150, 200, and 250°/s). The predicted maximum eccentric moment was 206% of the angle- and velocity-matched, maximal voluntary eccentric moments. This was attributed to a potent neural regulatory mechanism that limits the recruitment and/or discharge of motor units during maximal voluntary eccentric contractions.


Sign in / Sign up

Export Citation Format

Share Document