scholarly journals Sex differences in central and peripheral fatigue induced by sustained isometric ankle plantar flexion

2021 ◽  
Author(s):  
Donguk Jo ◽  
Miriam Goubran ◽  
Martin Bilodeau

The main aim of this study was to determine sex differences in central and peripheral fatigue produced by a sustained isometric exercise of ankle plantar flexors in healthy young adults. Ten males and fourteen females performed a sustained isometric ankle exercise until task failure. Maximal voluntary isometric contraction torque (plantarflexion), voluntary activation level (using the twitch interpolation technique), and twitch contractile properties (twitch peak torque, twitch half relaxation time, and low frequency fatigue index) were measured before, immediately after, and throughout a recovery period (1, 2, 5, and 10 min) following the exercise protocol in order to characterize neuromuscular fatigue. Fatigue had a significant effect (p £ 0.05) on all dependent variables. Other than for the maximal voluntary contraction torque, where males showed a greater fatigue-related decrease than females, males and females showed generally similar changes with fatigue. Altogether, our findings indicate no major differences in central or peripheral fatigue mechanisms between males and females to explain a somewhat greater fatigability in males.

Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 264-282
Author(s):  
Rihab Borji ◽  
Firas Zghal ◽  
Nidhal Zarrouk ◽  
Sonia Sahli ◽  
Haithem Rebai

The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.


2018 ◽  
Vol 43 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Carey L. Simpson ◽  
Rowan R. Smart ◽  
Dylan E.E. Melady ◽  
Jennifer M. Jakobi

Contraction velocity of a muscle tendon unit (MTU) is dependent upon the interrelationship between fascicles shortening and the tendon lengthening. Altering the mechanical properties of these tissues through a perturbation such as static stretching slows force generation. Females, who have inherently greater compliance compared with males, have slower velocity of MTU components. The addition of a static stretch might further exacerbate this sex difference. The purpose of this study was to investigate the velocity of fascicle shortening and tendon lengthening in males and females during isometric maximal voluntary contraction (MVC) of the plantar flexors prior to and following an acute static stretch. The MTU was imaged with ultrasound and voluntary activation tested with twitch interpolation for the 5-s plantar flexion MVC, which proceeded and followed an acute stretch. For the 3-min stretch the ankle was passively rotated to maximal dorsi-flexion. The males were stronger (128.71 ± 7.88 Nm) than the females (89.92 ± 4.70 Nm) but voluntary activation did not differ. Tendon lengthening velocity (p = 0.001) and fascicle shortening velocity (p = 0.01) were faster in males than females. Tendon velocity was positively and significantly correlated with fascicle velocity, (r2 = 0.307, p = 0.02). Although sex was significant as a predictor (p = 0.05) time was not independently significant. Thus, stretch did not alter this relationship in either sex (p = 0.6). The velocity of the individual components of the MTU is slower in females when compared with males; however, acute stretch does not alter the relationship between these components in males or females.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0253276
Author(s):  
Lauren K. Sara ◽  
Savannah B. Gutsch ◽  
Sandra K. Hunter

Introduction The single-leg heel raise test (SLHR) is commonly used in clinical settings to approximate plantar flexor strength, yet this is neither validated nor supported physiologically. The purposes of this study were to: determine (1) associations between SLHR repetitions, maximal plantar flexor strength, and reductions in strength; and (2) whether sex differences exist in performance of the SLHR. Methods Twenty-eight young, healthy participants (14 males,14 females, 19–30 years) performed repeated single-leg heel raises to task failure. Pre- and post-task measures included maximal voluntary isometric contractions (MVIC), and voluntary activation and contractile properties of the plantar flexor muscles, assessed using peripheral electrical stimulation of the tibial nerve. Surface electromyography was recorded for the medial and lateral gastrocnemius, soleus, and anterior tibialis muscles. Results The SLHR resulted in 20.5% reductions in MVIC torque (p<0.001). However, the number of SLHR repetitions was not correlated with either the baseline MVIC (maximal strength; p = 0.979) or the reduction in MVIC following the SLHR (p = 0.23). There were no sex differences in either the number of SLHR repetitions (p = 0.14), baseline MVIC torque (p = 0.198), or the reduction of MVIC (p = 0.14). MVIC decline was positively associated with the reduction in voluntary activation (r = 0.841, p<0.001), but was not associated with the change in twitch amplitude (p = 0.597). Conclusions The SLHR was similar in young males and females yet was a poor predictor of maximal plantar flexor strength but evaluates performance fatigability of the lower extremity specific to dynamic contractions. The reduction in maximal strength at task failure was explained by reduced neural drive to the plantar flexor muscles in both males and females. Impact statement SLHR performance is not a clinical assessment of plantar flexor strength but assesses dynamic lower extremity fatigability that is similar in males and females. Alternate clinical measures for maximal plantar flexion strength need to be developed.


1996 ◽  
Vol 81 (3) ◽  
pp. 1323-1330 ◽  
Author(s):  
E. Saugen ◽  
N. K. Vollestad

The effect of repetitive isometric knee extensions on the energy cost of contraction was examined. The rate of temperature rise (dT/dt) was determined in test contractions at 30 and 50% of maximal voluntary contraction (MVC) force before and during 30% MVC repetitive isometric exercise (RIE) to exhaustion and regularly in a 30-min postexercise recovery period (n = 9). Pulmonary O2 uptake and muscle temperature (Tmus) were determined at regular intervals. During the 30% MVC test contractions, dT/dt was 5.6 +/- 0.6 mK/s in unfatigued muscle, increasing linearly by 68% during exercise. In the 50% MVC test contractions, dT/dt rose by 84% from 9.8 +/- 1.1 mK/s. dT/dt determined during test contractions at both force levels did not decrease significantly throughout the 30-min postexercise recovery period. The rise in dT/dt was paralleled by 76% increased in O2 uptake. In contrast, Tmus rose initially and then leveled off. The present data indicate that RIE induced a gradual rise in the rate of energy turnover associated with isometric force production. Neither increased Tmus nor recruitment of less economic type II fibers can fully explain the increased energy cost. We suggest that energetic changes may occur at the cellular level and argue that this may be associated with the changes in muscle mechanics occurring during fatigue from submaximal voluntary RIE.


2007 ◽  
Vol 103 (4) ◽  
pp. 1402-1411 ◽  
Author(s):  
Savio W. Wong ◽  
Derek S. Kimmerly ◽  
Nicholas Massé ◽  
Ravi S. Menon ◽  
David F. Cechetto ◽  
...  

In general, cardiac regulation is dominated by the sympathetic and parasympathetic nervous systems in men and women, respectively. Our recent study had revealed sex differences in the forebrain network associated with sympathoexcitatory response to baroreceptor unloading. The present study further examined the sex differences in forebrain modulation of cardiovagal response at the onset of isometric exercise. Forebrain activity in healthy men ( n = 8) and women ( n = 9) was measured using functional magnetic resonance imaging during 5 and 35% maximal voluntary contraction handgrip exercise. Heart rate (HR), mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA) were collected in a separate recording session. During the exercise, HR and MAP increased progressively, while MSNA was suppressed ( P < 0.05). Relative to men, women demonstrated smaller HR (8 ± 2 vs. 18 ± 3 beats/min) and MAP (3 ± 2 vs. 11 ± 2 mmHg) responses to the 35% maximal voluntary contraction trials ( P < 0.05). Although a similar forebrain network was activated in both groups, the smaller cardiovascular response in women was reflected in a weaker insular cortex activation. Nevertheless, men did not show a stronger deactivation at the ventral medial prefrontal cortex, which has been associated with modulating cardiovagal activity. In contrast, the smaller cardiovascular response in women related to their stronger suppression of the dorsal anterior cingulate cortex activity, which has been associated with sympathetic control of the heart. Our findings revealed sex differences in both the physiological and forebrain responses to isometric exercise.


2001 ◽  
Vol 100 (6) ◽  
pp. 643-651 ◽  
Author(s):  
C. A. CARRINGTON ◽  
W. J. FISHER ◽  
M. K. DAVIES ◽  
M. J. WHITE

The roles of muscle afferent activity and central drive in controlling the compromised cardiovascular system of patients with mild chronic heart failure (CHF) during isometric exercise were examined. Blood pressure and heart rate responses were recorded in eight stable CHF patients (ejection fraction 20–40%; age 62±11 years) and in nine healthy age-matched controls during voluntary and electrically evoked isometric plantar flexion and subsequent post-exercise circulatory occlusion (PECO). During voluntary contraction, control subjects had a greater mean increase in systolic blood pressure than patients (42.4±19.2 and 23.0±10.9 mmHg respectively; P < 0.01), but this was not the case during PECO. During electrically evoked contraction, but not during PECO, the CHF group had smaller (P < 0.05) mean increases in both systolic and diastolic blood pressure than controls (13.0±5.3 compared with 25.4±14.0 mmHg and 7.6±3.0 compared with 12.9±7.2 mmHg respectively). Intra-group comparison between responses to voluntary and electrically evoked contractions revealed greater (P < 0.05) mean increases in systolic and diastolic blood pressure during the voluntary contraction in both the patients and the control subjects. These data suggest that muscle afferent drive to the pressor response from the triceps surae is low in this age group, both in control subjects and in CHF patients. Additionally, the patients may have a relatively desensitized muscle mechanoreceptor reflex.


2018 ◽  
Vol 1 (68) ◽  
Author(s):  
Nerijus Masiulis ◽  
Albertas Skurvydas ◽  
Sigitas Kamandulis ◽  
Audrius Sniečkus ◽  
Marius Brazaitis ◽  
...  

Following an acute physical exercise, both post-activation potentiation and fatigue of the neuromuscular apparatus may occur. The voluntary recruitment of motor units occurs with frequencies that elicit incompletely fused tetanic contractions and these frequencies are most susceptible for post-activation potentiation as well as low-frequency fatigue. Therefore, the goal of the present study was to investigate which of the processes post-activation potentiation or low-frequency fatigue will be prevalent after 5 s maximal voluntary contraction (MVC). Eight healthy untrained men (age 24—35 years, mass 81.2 ± 5.1 kg) performed maximal sustained isometric knee extension for 5 s at a knee angle of 90 degrees. The contractile properties of quadriceps muscle evoked by electrical stimulation at 1, 7, 10, 15, 20, 50 Hz and 100 Hz, were recorded before and immediately after the exercise and 3, 5, and 10 min following the exercise. The rest interval between muscle electrical stimulation was 3 s. A significant raise of force evoked by 1—15 Hz stimulation was observed immediately after the 5 s MVC exercise (p < 0.01). Later in recovery (at 10 min) the contraction force at 15 Hz and 20 Hz significantly decreased (p < 0.05). Tetanic force at 50 Hz and 100 Hz demonstrated a significant decrease immediately after the exercise and remained depressed up to 3 min (p < 0.01). The ratio of 20 / 50 Hz recorded immediately after the 5 s MVC increased significantly (p < 0.05), however 10 min after the exercise there was a significant decrease compared to its initial level (p < 0.05). The simultaneous occurrence of post-activation potentiation at low stimulation frequencies and suppressed forces at high stimulation frequencies suggests that potentiation and fatigue mechanisms were acting concurrently. Moreover, when post-activation potentiation is lost (in 10 min after the 5 s MVC exercise), the contraction force at low stimulation frequencies decreases resulting in significant low-frequency fatigue.Keywords: isometric exercise, electrical stimulation, low-frequency fatigue, recovery.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10388
Author(s):  
Miloš Kalc ◽  
Ramona Ritzmann ◽  
Vojko Strojnik

Background Whole body vibrations have been used as an exercise modality or as a tool to study neuromuscular integration. There is increasing evidence that longer WBV exposures (up to 10 minutes) induce an acute impairment in neuromuscular function. However, the magnitude and origin of WBV induced fatigue is poorly understood. Purpose The study aimed to investigate the magnitude and origin of neuromuscular fatigue induced by half-squat long-exposure whole-body vibration intervention (WBV) with sets of different duration and compare it to non-vibration (SHAM) conditions. Methods Ten young, recreationally trained adults participated in six fatiguing trials, each consisting of maintaining a squatting position for several sets of the duration of 30, 60 or 180 seconds. The static squatting was superimposed with vibrations (WBV30, WBV60, WBV180) or without vibrations (SHAM30, SHAM60, SHAM180) for a total exercise exposure of 9-minutes in each trial. Maximum voluntary contraction (MVC), level of voluntary activation (%VA), low- (T20) and high-frequency (T100) doublets, low-to-high-frequency fatigue ratio (T20/100) and single twitch peak torque (TWPT) were assessed before, immediately after, then 15 and 30 minutes after each fatiguing protocol. Result Inferential statistics using RM ANOVA and post hoc tests revealed statistically significant declines from baseline values in MVC, T20, T100, T20/100 and TWPT in all trials, but not in %VA. No significant differences were found between WBV and SHAM conditions. Conclusion Our findings suggest that the origin of fatigue induced by WBV is not significantly different compared to control conditions without vibrations. The lack of significant differences in %VA and the significant decline in other assessed parameters suggest that fatiguing protocols used in this study induced peripheral fatigue of a similar magnitude in all trials.


1995 ◽  
Vol 74 (2) ◽  
pp. 849-855 ◽  
Author(s):  
T. Sinkjaer ◽  
J. Nielsen ◽  
E. Toft

1. The purpose of the present study is to investigate how reciprocal inhibition influences the mechanical and electromyographic (EMG) properties of the ankle plantar flexors in humans during a voluntary contraction. 2. At different levels of maintained plantar flexion contractions ranging from 0 to 20 Nm, the size of the soleus EMG stretch reflex and the ankle joint stiffness (ration between the torque increment and the amplitude of the stretch) were measured in response to an imposed dorsiflexion. At matched plantar flexion contraction levels, stretch responses were compared before and after reversible block of the common peroneal nerve (CPN). Stretch responses were also measured during an attempted voluntary fictive dorsiflexion after CPN block. 3. In the preactivated soleus muscles, the phasic EMG response to stretch consisted of two peaks labeled M1 and M2. After CPN block, the M1 short-latency stretch reflex on average increased by 25 +/- 5.7%, mean +/- SD (P < 0.001), and the M2 stretch reflex increased on average by 29 +/- 13.0% (P = 0.002). 4. The total stiffness of the ankle joint during a stretch is the sum of the nonreflex and the reflex mediated stiffness. The total stiffness after CPN block increased on average by 13 +/- 2.7% (P = 0.002) and the estimated reflex stiffness by 33 +/- 6.5% (P < 0.001). 5. When the subjects were asked to make a strong dorsiflexion after CPN block, the soleus stretch reflex was depressed to the extent that the reflex mediated mechanical effect around the ankle joint was abolished.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 114 (10) ◽  
pp. 1426-1434 ◽  
Author(s):  
Daria Neyroud ◽  
Jennifer Rüttimann ◽  
Anne F. Mannion ◽  
Guillaume Y. Millet ◽  
Nicola A. Maffiuletti ◽  
...  

The extent and characteristics of muscle fatigue of different muscle groups when subjected to a similar fatiguing task may differ. Thirteen healthy young men performed sustained contractions at 50% maximal voluntary contraction (MVC) force until task failure, with four different muscle groups, over two sessions. Per session, one upper limb and one lower limb muscle group were tested (knee extensors and thumb adductor, or plantar and elbow flexors). Changes in voluntary activation level and contractile properties were derived from doublet responses evoked during and after MVCs before and after exercise. Time to task failure differed ( P < 0.05) between muscle groups (220 ± 64 s for plantar flexors, 114 ± 27 s for thumb adductor, 77 ± 25 s for knee extensors, and 72 ± 14 s for elbow flexors). MVC force loss immediately after voluntary task failure was similar (−30 ± 11% for plantar flexors, −37 ± 13% for thumb adductor, −34 ± 15% for knee extensors, and −40 ± 12% for elbow flexors, P > 0.05). Voluntary activation was decreased for plantar flexors only (from 95 ± 5% to 82 ± 9%, P < 0.05). Potentiated evoked doublet amplitude was more depressed for upper limb muscles (−59.3 ± 14.7% for elbow flexors and −60.1 ± 24.1% for thumb adductor, P < 0.05) than for knee extensors (−28 ± 15%, P < 0.05); no reduction was found in plantar flexors (−7 ± 12%, P > 0.05). In conclusion, despite different times to task failure when sustaining an isometric contraction at 50% MVC force for as long as possible, diverse muscle groups present similar loss of MVC force after task failure. Thus the extent of muscle fatigue is not affected by time to task failure, whereas this latter determines the etiology of fatigue.


Sign in / Sign up

Export Citation Format

Share Document