scholarly journals CHANGE OF CONCENTRATION OF HYDROGEN PEROXIDE AND cAMP IN TRANSGENIC PLANTS IN VITRO GRADE SCARB DEPENDING ON RESISTANCE TO BACTERIAL RING ROT PATHOGEN

Author(s):  
N.V. Filinova ◽  
L.A. Lomovatskaya ◽  
A.S. Romanenko
2018 ◽  
Vol 55 (No. 1) ◽  
pp. 11-22
Author(s):  
Pánková Iveta ◽  
Krejzar Václav ◽  
Krejzarová Radka

Variability in the responses of plants propagated from in vitro tissue cultures of 52 ware and industrial potato cultivars to different Clavibacter michiganensis subsp. sepedonicus inoculum size was tested during 2015–2017. Bacterial ring rot symptoms on plants and tubers xylem vessels were recorded for 8 weeks and the susceptibility index (SI) for individual cultivars was calculated. Based on foliage symptoms, potato cultivars were placed into three symptoms groups. The symptomless group had SIs ≤ 1, for the moderate symptom group SIs ranged from 1.01 to 2.99, and the severe symptom group had SIs ≥ 3.0. The pathogen concentrations in vascular vessels of all infected potato plants increased during the experiment regardless of the foliage symptom group.


Odontology ◽  
2021 ◽  
Author(s):  
Sarita Giri ◽  
Ayuko Takada ◽  
Durga Paudel ◽  
Koki Yoshida ◽  
Masae Furukawa ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vishal Panchariya ◽  
Vishal Bhati ◽  
Harishkumar Madhyastha ◽  
Radha Madhyastha ◽  
Jagdish Prasad ◽  
...  

AbstractExtraction of biosurfactants from plants is advantageous than from microbes. The properties and robustness of biosurfactant derived from the mesocarp of Balanites aegyptiaca have been reported. However, the dark brown property of biosurfactant and lack of knowledge of its biocompatibility limits its scope. In the present work, the decolorization protocol for this biosurfactant was optimized using hydrogen peroxide. The hemolytic potential and biocompatibility based on cell toxicity and proliferation were also investigated. This study is the first report on the decolorization and toxicity assay of this biosurfactant. For decolorization of biosurfactant, 34 full factorial design was used, and the data were subjected to ANOVA. Results indicate that 1.5% of hydrogen peroxide can decolorize the biosurfactant most efficiently at 40 °C in 70 min at pH 7. Mitochondrial reductase (MTT) and reactive oxygen species (ROS) assays on M5S mouse skin fibroblast cells revealed that decolorized biosurfactant up to 50 µg/mL for 6 h had no significant toxic effect. Hemolysis assay showed ~ 2.5% hemolysis of human RBCs, indicating the nontoxic effect of this biosurfactant. The present work established a decolorization protocol making the biosurfactant chromatically acceptable. Biocompatibility assays confirm its safer use as observed by experiments on M5S skin fibroblast cells under in vitro conditions.


2019 ◽  
Vol 1075 ◽  
pp. 91-97 ◽  
Author(s):  
Mahboubeh Eskandari ◽  
Jadwiga Rembiesa ◽  
Lauryna Startaitė ◽  
Anna Holefors ◽  
Audronė Valančiūtė ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A747-A747
Author(s):  
Andrew MacKinnon ◽  
Deepthi Bhupathi ◽  
Jason Chen ◽  
Tony Huang ◽  
Weiqun Li ◽  
...  

BackgroundTumors evade destruction by the immune system through multiple mechanisms including altering metabolism in the tumor microenvironment. Metabolic control of immune responses occurs through depletion of essential nutrients or accumulation of toxic metabolites that impair immune cell function and promote tumor growth. The secreted enzyme interleukin 4 (IL-4)-induced gene 1 (IL4I1) is an L-phenylalanine oxidase that catabolizes phenylalanine and produces phenyl-pyruvate and hydrogen peroxide. IL4I1 regulates several aspects of adaptive immunity in mice, including inhibition of cytotoxic T cells through its production of hydrogen peroxide (reviewed in1). In human tumors, IL4I1 expression is significantly elevated relative to normal tissues and is notably high in ovarian tumors and B cell lymphomas. Motivated by the hypothesis that IL4I1 is an immuno-metabolic enzyme that suppresses anti-tumor immunity, we discovered CB-668, the first known small-molecule inhibitor of IL4I1.MethodsIL4I1 enzymatic activity was measured using an HRP-coupled enzyme assay. RNA in-situ hybridization was carried out on the RNAScope platform. Syngeneic mouse tumor models were used to evaluate the anti-tumor activity of CB-668. The level of phenyl-pyruvate in tumor homogenates was measured by LC/MS.ResultsOur clinical candidate, CB-668 is a potent and selective non-competitive inhibitor of IL4I1 (IC50 = 15 nM). CB-668 has favorable in vitro ADME properties and showed low clearance and high oral bioavailability in rodents. Twice-daily oral administration of CB-668 was well-tolerated in mice and resulted in single-agent anti-tumor activity in the syngeneic mouse tumor models B16-F10, A20, and EG7. Oral CB-668 administration reduced the levels of phenyl-pyruvate in the tumor, consistent with inhibition of IL4I1 enzymatic activity. Anti-tumor activity of CB-668 was immune cell-mediated since efficacy was abrogated in CD8-depleted mice, and CB-668 treatment caused increased expression of pro-inflammatory immune genes in the tumor. Moreover, CB-668 had no direct anti-proliferative activity on tumor cells grown in vitro (IC50 > 50 µM). CB-668 also favorably combined with anti-PD-L1 therapy to reduce tumor growth in the B16-F10 tumor model.ConclusionsThese data support an immune-mediated anti-tumor effect of IL4I1 inhibition by CB-668, and suggest inhibition of IL4I1 represents a novel strategy for cancer immuno-therapy.ReferencesMolinier-Frenkel V, Prévost-Blondel A, and Castellano F. The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells 2019;8:1–9.


Sign in / Sign up

Export Citation Format

Share Document