gingival epithelial cell
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shuichiro Kobayashi ◽  
Jiarui Bi ◽  
Gethin Owen ◽  
Nelli Larjava ◽  
Leeni Koivisto ◽  
...  

Abstract Soft tissue calcification occurs in many parts of the body, including the gingival tissue. Epithelial cell-derived MVs can control many functions in fibroblasts but their role in regulating mineralization has not been explored. We hypothesized that microvesicles (MVs) derived from gingival epithelial cells could regulate calcification of gingival fibroblast cultures in osteogenic environment. Human gingival fibroblasts (HGFs) were cultured in osteogenic differentiation medium with or without human gingival epithelial cell-derived MV stimulation. Mineralization of the cultures, localization of the MVs and mineral deposits in the HGF cultures were assessed. Gene expression changes associated with MV exposure were analyzed using gene expression profiling and real-time qPCR. Within a week of exposure, epithelial MVs stimulated robust mineralization of HGF cultures that was further enhanced by four weeks. The MVs taken up by the HGF's did not calcify themselves but induced intracellular accumulation of minerals. HGF gene expression profiling after short exposure to MVs demonstrated relative dominance of inflammation-related genes that showed increases in gene expression. In later cultures, OSX, BSP and MMPs were significantly upregulated by the MVs. These results suggest for the first time that epithelial cells maybe associated with the ectopic mineralization process often observed in the soft tissues.


Odontology ◽  
2021 ◽  
Author(s):  
Sarita Giri ◽  
Ayuko Takada ◽  
Durga Paudel ◽  
Koki Yoshida ◽  
Masae Furukawa ◽  
...  

Author(s):  
James C. Ragain ◽  
Brian A. Brodine ◽  
Qian Zheng ◽  
Bernard J. Blen ◽  
Franklin Garcia-Godoy ◽  
...  

2021 ◽  
Vol 9 (19) ◽  
pp. 6574-6583
Author(s):  
Naoko Sasaki ◽  
Hiroki Takeuchi ◽  
Shiro Kitano ◽  
Shinji Irie ◽  
Atsuo Amano ◽  
...  

Reconstruction of a vascularized gingival 3D model which can be invaded by P. gingivalis through blood capillaries (HGF: human gingival fibroblast, HUVEC: human umbilical vein endothelial cell, IHGE cell: immortalized human gingival epithelial cell).


2020 ◽  
Vol 40 ◽  
pp. 259
Author(s):  
E Boloori ◽  
◽  
T Schoenmaker ◽  
CJ Kleverlaan ◽  
BG Loos ◽  
...  

Ideal restoration material for caries would allow attachment of gingival epithelia. The attachment of epithelial cells to specimens of the 4 most commercially used well- or partially-cured resin composites, with and without TEGDMA, was assessed. Effects of resin composite on the Ca9-22 gingival epithelial cell-line were assessed by measuring the cytotoxicity, viability and gene expression for attachment, apoptosis, ROS-production, pro-inflammatory cytokines, and matrix metalloproteinases. As controls, cells on tissue culture plastic or bovine tooth enamel specimens were used. Significantly less cell attachment was measured on freshly made resin-composite specimens. Concomitantly, significantly higher cytotoxicity was measured in the presence of freshly made resin-composite specimens. However, after 8 d of leakage, the cell attachment to and cytotoxicity of the resin composite was comparable to bovine tooth enamel. Significantly higher expressions of IL6, MMP2, BCL6 and ITGA4 were measured in cells attached to resin-composite surfaces than controls. There were no significant differences between the results using different conditions of resin composite, with or without TEGDMA and well or partially cured. Less cell attachment and presence of more inflammatory markers were observed on all freshly-made resin-composite surfaces. However, after a leakage period attachment of cells to the resin composite improved to the level of natural tooth materials such as enamel. This indicated that the negative effects of resin composites on epithelial cells might be transient.


2020 ◽  
pp. 002203452097301
Author(s):  
J.S. Lee ◽  
Ö. Yilmaz

Epithelia are structurally integral elements in the fabric of oral mucosa with significant functional roles. Similarly, the gingival epithelium performs uniquely critical tasks in responding to a variety of external stimuli and dangers through the regulation of specific built-in molecular mechanisms in a context-dependent fashion at cellular levels. Gingival epithelial cells form an anatomic architecture that confers defense, robustness, and adaptation toward external aggressions, most critically to colonizing microorganisms, among other functions. Accordingly, recent studies unraveled previously uncharacterized response mechanisms in gingival epithelial cells that are constructed to rapidly exert biocidal effects against invader pathobiotic bacteria, such as Porphyromonas gingivalis, through small danger molecule signaling. The host-adapted bacteria, however, have developed adroit strategies to 1) exploit the epithelia as privileged growth niches and 2) chronically target cellular bactericidal and homeostatic metabolic pathways for successful bacterial persistence. As the overgrowth of colonizing microorganisms in the gingival mucosa can shift from homeostasis to dysbiosis or a diseased state, it is crucial to understand how the innate modulatory molecules are intricately involved in antibacterial pathways and how they shape susceptibility versus resistance in the epithelium toward pathogens. Thus, in this review, we highlight recent discoveries in gingival epithelial cell research in the context of bacterial colonizers. The current knowledge outlined here demonstrates the ability of epithelial cells to possess highly organized defense machineries, which can jointly regulate host-derived danger molecule signaling and integrate specific global responses against opportunistic bacteria to combat microbial incursion and maintain host homeostatic balance. These novel examples collectively suggest that the oral epithelia are equipped with a dynamically robust and interconnected defense system encompassing sensors and various effector molecules that arrange and achieve a fine-tuned and advanced response to diverse bacteria.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 278 ◽  
Author(s):  
Arzu Beklen ◽  
Annamari Torittu ◽  
Riikka Ihalin ◽  
Marja Pöllänen

Epithelial cells express keratins, which are essential for the structural integrity and mechanical strength of the cells. In the junctional epithelium (JE) of the tooth, keratins such as K16, K18, and K19, are expressed, which is typical for non-differentiated and rapidly dividing cells. The expression of K17, K4, and K13 keratins can be induced by injury, bacterial irritation, smoking, and inflammation. In addition, these keratins can be found in the sulcular epithelium and in the JE. Our aim was to estimate the changes in K4, K13, K17, and K19 expression in gingival epithelial cells exposed to Aggregatibacter actinomycetemcomitans. An organotypic gingival mucosa and biofilm co-culture was used as a model system. The effect of the biofilm after 24 h was assessed using immunohistochemistry. The structure of the epithelium was also studied with transmission electron microscopy (TEM). The expression of K17 and K19, as well as total keratin expression, decreased in the suprabasal layers of epithelium, which were in close contact with the A. actinomycetemcomitans biofilm. The effect on keratin expression was biofilm specific. The expression of K4 and K13 was low in all of the tested conditions. When stimulated with the A. actinomycetemcomitans biofilm, the epithelial contact site displayed a thick necrotic layer on the top of the epithelium. The A. actinomycetemcomitans biofilm released vesicles, which were found in close contact with the epithelium. After A. actinomycetemcomitans irritation, gingival epithelial cells may lose their resistance and become more vulnerable to bacterial infection.


Author(s):  
Humidah Alanazi ◽  
Abdelhabib Semlali ◽  
Witold Chmielewski ◽  
Mahmoud Rouabhia

Electronic cigarette (e-cigarette) vapor comes in contact with the different constituents of the oral cavity, including such microorganisms as Candida albicans. We examined the impact of e-cigarettes on C. albicans growth and expression of different virulent genes, such as secreted aspartic proteases (SAPs), and the effect of e-cigarette vapor-exposed C. albicans on gingival epithelial cell morphology, growth, and lactate dehydrogenase (LDH) activity. An increase in C. albicans growth was observed with nicotine-rich e-cigarettes compared with non-exposed cultures. Following exposure to e-cigarette vapor, C. albicans produced high levels of chitin. E-cigarettes also increased C. albicans hyphal length and the expression of SAP2, SAP3, and SAP9 genes. When in contact with gingival epithelial cells, e-cigarette-exposed C. albicans adhered better to epithelial cells than the control. Indirect contact between e-cigarette-exposed C. albicans and gingival epithelial cells led to epithelial cell differentiation, reduced cell growth, and increased LDH activity. Overall, results indicate that e-cigarettes may interact with C. albicans to promote their pathogenesis, which may increase the risk of oral candidiasis in e-cigarette users.


Sign in / Sign up

Export Citation Format

Share Document